NotPoliticallyCorrect

Home » Posts tagged 'Baseball'

Tag Archives: Baseball

HBD and Sports: Baseball and Reaction Time

2050 words

If you’ve ever played baseball, then you have first-hand experience on what it takes to play the game, one of the major abilities you need is a quick reaction time. Baseball players are in the upper echelons in regards to pitch recognition and ability to process information (Clark et al, 2012).

Some people, however, believe that there is an ‘IQ cutoff’ in regards to baseball; since general intelligence is supposedly correlated with reaction time (RT), then those with higher RTs must have higher intelligence and vice-versa. However, this trait—in a baseball context—is trainable to an extent. To those that would claim that IQ would be a meaningful metric in baseball I pose two question: would higher IQ teams, on average, beat lower IQ teams and would higher IQ people have better batting averages (BAs) than lower IQ people? This, I doubt, because as I will cover, these variables are trainable and therefore talking about reaction time in the MLB in regards to intelligence is useless.

Meden et al (2012) tested athlete and non-athlete college students on visual reaction time (VRT). They tested the athletes’ VRT once, while they tested the non-athletes VRT two times a week for a 3 week period totaling 6 tests. Men ended up having higher VRTs in comparison to women, and athletes had better VRTs than non-athletes. So therefore, this study proves that VRT is a trainable variable. If VRT can be improved with training, then hitting and fielding can also be trained as well.

Reaction time training is the communication between the brain, musculoskeletal system and spinal cord, which includes both physical and cognitive training. So since VRT can be trained, then it makes logical sense that Major League hitting and fielding can be trained as well.

David Epstein, author of The Sports Gene says that he has a faster reaction time than Albert Pujols:

One of the big surprises for me was that pro athletes, particularly in baseball, don’t have faster reflexes on average than normal people do. I tested faster than Albert Pujols on a visual reaction test. He only finished in the 66thpercentile compared to a bunch of college students.

It’s not a superior RT that baseball players have in comparison to the normal population, says Epstein, but “learned perceptual skills that the MLB players don’t know they learned.” Major League baseball players do have average reaction times (Epstein, 2013: 1) but a far superior visual acuity. Most pro-baseball players had visual acuity of 20/13, with some players having 20/11; the theoretical best visual acuity that is possible is 20/8 (Clark et al, 2012). Laby, Kirschen, and Abbatine show that 81 percent of the 1500 Major and Minor League Mets and Dodgers players had visual acuities of 20/15 or better, along with 2 percent of players having a visual acuity of 20/9.2. Baseball players average a 20/13 visual acuity with the best eyesight humanly possible being 20/8. (Laby et al, 1996).

So it’s not faster RT that baseball players have, but a better visual acuity—on average—in comparison to the general population. Visual reaction time is a highly trainable variable, and so since MLB players have countless hours of practice, they will, of course, be superior on that variable.

Clark et al (2012) showed that high-performance vision training can be performed at the beginning of the season and maintained throughout the season to improve batting parameters. They also state that visual training programs can help hitters, since the eyes account for 80 percent of the information taken into the brain. Reichow, Garchow, and Baird (2011) conclude that a “superior ability to recognize pitches presented via tachistoscope may correlate with a higher skill level in batting.” Clark et al (2012) posit that their training program will help batters to better recognize the spot of the ball and the pitcher’s finger position in order to better identify different pitches. Clark et al (2012) conclude:

The University of Cincinnati baseball team, coaches and vision performance team have concluded that our vision training program had positive benefits in the offensive game including batting and may be providing improved play on defense as well. Vision training is becoming part of out pre-season and in season conditioning program as well as for warmups.

Classe et al (1997) showed that VRT was related to batting, but not fielding or pitching skill. Further, there was no statistically significant difference observed between VRT and age, race or fielding. Therefore, we can say that VRT has no statistical difference on race and does not contribute to any racial differences in baseball.

Baseball and basketball athletes had faster RTs than non-athletes (Nakamoto and Mori, 2008). The Go/NoGo response that is typical of athletes is most certainly trainable. Kida et al (2005) showed that intensive practice improved the Go/NoGo reaction time, but not simple reaction time. Kida et al (2005: 263-264) conclude that simple reaction time is not an accurate indicator of experience, performance or success in sports; Go/NoGo can be improved by practice and is not innate (but simple reaction time was not altered) and the Go/NoGo reaction time can be “theoretically shortened toward a certain value determined by the simple reaction time proper to each individual.

In baseball players in comparison to a control group, readiness potential was significantly shorter for the baseball players (Park, Fairweather, and Donaldson, 2015).  Hand-eye coordination, however, had no effect on earned run average (ERA) or batting average in a sample of 410 Major and Minor League members of the LA Dodgers (Laby et al, 1997).

So now we know that VRT can be trained, VRT shows no significant racial differences, and that Go/NoGo RT can be improved by practice. Now a question I will tackle is: can RT tell us anything about success in baseball and is RT related to intelligence/IQ?

Khodadi et al (2014) conclude that “The relationship between reaction time and IQ is too complicated and revealing a significant correlation depends on various variables (e.g. methodology, data analysis, instrument etc.).” So since the relationship is too complicated between the two variables, mostly due to methodology and the instrument used, RT is not a good correlate of IQ. It can, furthermore, be trained (Dye, Green, and Bavelier, 2012).

In the book A Question of Intelligence, journalist Dan Seligman writes:

In response, Jensen made two points: (1) The skills I was describing involve a lot more than just reaction time, they also depended heavily on physcial coordination and endless practice. (2) It was, however, undoubtedly true that there was some IQ requirement-Jensen guessed it might be around 85- below which you could never recruit for major league baseball. (About one-sixth of Americans fall below 85).

I don’t know where Jensen grabbed the ‘IQ requirement’ for baseball, which he claims to be around 85 (which is at the black average in America). This quote, however, proves my point that there is way more than RT involved in hitting a baseball, especially a Major League fastball:

Hitting a baseball traveling at 100 mph is often considered one of the most difficult tasks in all of sports. After all, if you hit the ball only 30% of the time, baseball teams will pay you millions of dollars to play for them. Pitches traveling at 100 mph take just 400 ms to travel from the pitcher to the hitter. Since the typical reaction time is 200 ms, and it takes 100 ms to swing the bat, this leaves just 100 ms of observation time on which the hitter can base his swing.

This lends more credence to the claim that hitting a baseball is more than just quick reflexes; considerable training can be done to learn certain cues that certain pitchers use; for instance, like identifying different pitches a particular pitcher does with certain arm motions coming out of the stretch. This, as shown above in the Epstein quote, is most definitely a trainable variable.

Babe Ruth, for instance, had better hand-eye coordination than 98.8 percent of the population. Though that wasn’t why he was one of the greatest hitters of all time; it’s because he mastered all of the other variables in regards to hitting, which are learnable and not innate.

Witt and Proffitt (2005) showed that the apparent ball size is correlated with batting average, that is, the better batters fared at the plate, the bigger they perceived the ball to be so they had an easier time hitting it. Hitting has much less to do with reaction time and much more to do with prediction, as well as the pitching style of the pitcher, his pitching repertoire, and numerous other factors.

It takes a 90-95 mph fast ball about 400 milliseconds to reach home plate. It takes the brain 100 milliseconds to process the image that the eyes are taking in, 150 milliseconds to swing and 25 milliseconds for his brain to send a signal to his body to swing. This leaves the hitter with 125 milliseconds left to hit the incoming fastball. Clearly, there is more to hitting than reaction time, especially when all of these variables are in play. Players have .17 seconds to decide whether or not to hit a pitch and where to place their bat (Clark et al, 2012)

A so-called ‘IQ cutoff’ for baseball does exist, but only because IQs lower than 85 (once you begin to hit the 70s range, especially the lower levels) indicate developmental disorders. Further, the 85-115 IQ range encompasses 68 percent of the population. However, RT is not even one of the most important factors in hitting; numerous other (trainable) variables influence fastball hitting, and all of the best players in the world employ these strategies. People may assume that since intelligence and RT are (supposedly) linked, that baseball players, since they (supposedly) have quick RTs. Nevertheless, if quick RTs were correlated with baseball profienciency—namely, in hitting, then why are Asians 1.2 percent of the players in the MLB? Maybe because RT doesn’t really have anything to do with hitting proficiency and other variables have more to do with it.

People may assume that since intelligence and RT are (supposedly) linked, that baseball players, since they (supposedly) have quick RTs then they must be intelligent and therefore there must be an IQ cutoff because intelligence/g and RT supposedly correlate. However, I’ve shown 2 things: 1) RT isn’t too important to hitting at an elite level and 2) more important skills can be acquired in hitting fastballs, most notable, in my opinion, is pitch verification and the arm location of the pitcher. The Go/NoGo RT can also be trained and is, arguably, one of the most important training systems for elite hitting. Clearly, elite hitting is predicated on way more than just a quick RT; and most of the variables that are involved in elite hitting are most definitely trainable, as reviewed in this article.

People, clearly, make unfounded claims without having any experience in something. It’s easy to make claims about something when you’re just looking at numbers and attempting to draw conclusions based on data. But it’s a whole other ballgame (pun intended) when you’re up at the plate yourself or coaching someone on how to hit or play in the infield. These baseless claims would be avoided a lot more if only the people who make these claims had any actual athletic experience. If so, they would know of the constant repetition that goes into hitting and fielding, the monotonous drills you have to do everyday until your muscle memory is trained to flawlessly—without even thinking about it—throw a ball from shortstop to first base.

Practice, especially Major League practice, is pivotal to elite hitting; only with elite practice can a player learn how to spot the ball and the pitcher’s finger position to quickly identify the pitch type in order to decide if he wants to swing or not. In conclusion, a whole slew of cognitive/psychological abilities are involved in the upper echelons of elite baseball, however a good majority of the traits needed to succeed in baseball are trainable, and RT has little to do with elite hitting.

(When I get time I’m going to do a similar analysis like what I wrote about in the article on my possible retraction of my HBD and baseball article. Blacks dominate in all categories that matter, this holds for non-Hispanic whites and blacks as well as Hispanic blacks and whites, read more here. Nevertheless, I may look at the years 1997-2017 and see if anything has changed from the analysis done in the late 80s. Any commentary on that matter is more than welcome.)

Possibly Retracting My Article on HBD and Baseball

700 words

I am currently reading Taboo: Why Black Athletes Dominate Sports and Why We’re Afraid To Talk About It and came across a small section in the beginning of the book talking about black-white differences in baseball. It appears I am horribly, horribly wrong and it looks like I may need to retract my article HBD and Sports: Baseball. However, I don’t take second-hand accounts as gospel, so I will be purchasing the book that Entine cites, The Bill James Baseball Abstract 1987 to look into it myself and I may even do my own analysis on modern-day players to see if this still holds. Nevertheless, at the moment disregard the article I wrote last year until I look into this myself.


Excerpt from Taboo: Why Black Athletes Dominate Sports and Why We’re Afraid To Talk About It:

Baseball historian Bill James, author of dozens of books on the statistical twists of his favorite sport believes this trend [black domination in baseball] is not a fluke. In an intriguing study conducted in 1987, he compared the careers of hundreds of rookies to figure out what qualities best predict who would develop into stars. He noted many intangible factors, such as whether a player stays fit or is just plain lucky. The best predictors of long-term career success included the age of the rookie, his defensive position as a determinant in future hitting success (e.g., catchers fare worse than outfielders), speed, and the quality of the player’s team. But all of these factors paled when compared to the color of the player’s skin.

“Nobody likes to write about race,” James noted apologetically. “I thought I would do a [statistical] run of black players against white players, fully expecting that it would show nothing in particular or nothing beyond the outside range of chance, and I would file it away and never mention that I had looked at the issue at all.

James first compared fifty-four white rookies against the same number of black first-year players who had comparable statistics. “The results were astonishing,” James wrote. The black players:

* went on to have better major-league careers in 44 out of 54 cases

* played 48 percent more games

* had 66 percent more major league hits

* hit 93 percent more triples

* hit 66 percent more home runs

* scored 69 percent more runs

* stole 400 more bases (Entine, 2000: 22-23)

Flabbergasted at what he found, James ran a second study using forty-nine black/white comparisons. Again, blacks proved more durable, retained their speed longer, and were consistently better hitters. For example, he compared Ernie Banks, a power hitting shortstop for the Chicago Cubs, and Bernie Allen who broke in with Minnesota. They both reached the majors when they were twenty-three years old, were the same height and weight, and were considered equally fast. Over time, Allen bombed and Banks landed in the Hall of Fame. (Entine, 2000: 24)

In an attempt to correct for possible bias, James compared players with comparable speed statistics such as the number of doubles, triples, and stolen bases. He ran a study focused on players who had little speed. He analyzed for “position bias” and made sure that players in the same eras were being compared. Yet every time he crunched the numbers, the results broke down across racial lines. When comparing home runs, runs scored, RBIs or stolen bases, black players held an advantage a startling 80 percent of the time. “And I could identify absolutely no bias to help explain why this should happen,” James said in disbelief.

James also compared white Hispanic rookies whom he assumed faced an uphill battle similar to that for blacks, with comparable groups of white and black players. The blacks dominated the white Latinos by even more than they did white North Americans, besting them in 19 of the 26 comparisons. Blacks played 62 percent more games, hit 192 more home runs, drove in 125 percent more runs, and stole 30 percent more bases.

So why have blacks become the stars of baseball far out of proportion to their relative numbers? James eventually concluded that there were two possible explanations: “Blacks are better athletes because they are born better athletes, which is to say that it is genetic, or that they are born equal and become better athletes. (Entine, 2000: 24-25)

HBD and Sports: Baseball

1350 words

Racial differences in sports also prove HBD. The differences are extremely clear to the naked eye, but there are many physiological differences between races that lead to disparities of one being over-represented over another race. I will touch on the three main races (Europeans, Asians and Africans), what they excel in and what they are below average in. Sports, as does academic achievement, prove HBD right. Sports prove innate athletic differences, whereas academic achievement proves innate differences in the brain, as well as intelligence. This is on average of course.

The word ‘sport’ is defined as an athletic activity requiring skill or physical ability, often of competitive nature. The sports I will touch on are baseball, basketball, soccer, football, weightlifting, bodybuilding, chess, gaming and hockey.

Baseball is predominantly white (MLB’s 2015 Racial/Gender Report Card), at 58.8 percent white (down from 60.9 in 2014), 8.3 percent black (up from 8.2 percent in 2014), 29.3 percent ‘Latino’ (up from 28.4 percent in 2014), and 1.2 percent Asian (down from 2 percent in 2014). Baseball is actually one of the only sports in America to be close enough to the ethnic mix of the country. According to the SABR (Society for American Baseball Research), the highest rate for black players in the MLB was in 1981 at 18.7 percent.

Before getting in to why the disparity is that large, I need to touch on ‘Latinos’ in baseball.

According to MLB.com, in 2014, 224 out of 853  players (750 active 25-man roster players and 103 disabled or restricted Major League players) were foreign-born, accounting for 26.3 percent of the players that year. Highest is the Dominican Republic with 83 players, followed by Venezuela with 59 players, Cuba with 19, Puerto Rico with 11, Mexico with 9, Colombia with 4, Panama with 4 and Nicaragua with 3. That makes 192 ‘Latino’ baseball players.

This article talks about how ‘black Latinos’ don’t get treated as black, but as ‘Latino’, when they are racially black (I will show some notable examples below). People like to think that it’s its own separate racial category when that’s not true at all.

Using 2014’s numbers, 520 players were white, 72 were black, 243 were ‘Latinos’, and 18 were Asians. We know that all ‘Latinos’ aren’t black, so using 2014’s numbers by country I will try to estimate the number of black ‘Latino’ players to try to get a real look at the racial breakdown in the MLB.

For brevity, I will just add each country up as what the majority mix of that particular country is. So, adding to the 72 black players I will add 83 from D.R., Cuba with 19, I’ll split P.R. with 5. Venezuela has a mix of blacks, whites and mulattoes, so I will just say 25 percent are black. That’s 15. Adding those up you get 194 black players. Keep in mind, a conservative estimate. So that makes the MLB about 23 percent black (this is only for those from foreign-born countries, I may make a comprehensive list one day if I feel up to it about this).

(I will just group mestizos as white for brevity to only have 3 categories.) So with that being said, 641 white players, 194 black players, and 18 Asian players. So with my guesstimate, baseball is 75 percent white, 23 percent black and 2 percent Asian in 2014.

Why the huge disparity? Simple. Baseball, at its core, is about reaction time. To quote Rushton and Jensen from their magnum opus Thirty Years of Research on Race Differences in Cognitive Ability (pg 244):

Reaction time is one of the simplest culture-free cognitive measures. Most reaction time tasks are so easy that 9- to 12-year-old children can perform them in less than 1 s. But even on these very simple tests, children with higher IQ scores perform faster than do children with lower scores, perhaps because reaction time measures the neurophysiological efficiency of the brain’s capacity to process information accurately—the same ability measured by intelligence tests (Deary, 2000; Jensen, 1998b). Children are not trained to perform well on reaction time tasks (as they are on certain paper-and-pencil tests), so the advantage of those with higher IQ scores on these tasks cannot arise from practice, familiarity, education, or training.

And from pg 245:

The same pattern of average scores on these and other reaction time tasks (i.e., East Asians faster than Whites faster than Blacks) is found within the United States. Jensen (1993) and Jensen and Whang (1994) examined the time taken by over 400 schoolchildren ages 9 to 12 years old in California to retrieve overlearned addition, subtraction, or multiplication of single digit numbers (from 1 to 9) from long-term memory. All of the children had perfect scores on paper-andpencil tests of this knowledge, which was then reassessed using the Math Verification Test. The response times significantly correlated (negatively) with Raven Matrices scores, whereas movement times have a near-zero correlation. The average reaction times for the three racial groups differ significantly (see Figure 2). They cannot be explained by the groups’ differences in motivation because the East Asian children averaged a shorter response time but a longer movement time than did the Black children.

Those with higher IQs average faster times on the simple RT, choice RT and odd-man-out RT. They follow Rushton’s Rule of Three, in which blacks will be at the bottom, whites in the middle and Asians at the top.

In this articleMind Games: What Makes a Great Baseball Player Great, they say that studies done by Columbia University on Babe Ruth while he was playing showed that he could react to visual and sound cues better than the normal population, as well as having better hand-eye coordination than 98.8 percent of the population. A great proportion of MLB players have 20/20 vision or better. Within higher-skilled players, even then there are huge differences in reaction time (IQ differences). Hitters also have to predict where the ball will be, all within a 4/10ths of a second. This infographic explains it well. So you need an extremely high reaction time to hit a fastball coming at you at 95 miles per hour. All of this proves that, on average, baseball players have high IQs because of a lot of the things associated with baseball, also correlate highly with IQ.

Personality also is a factor. According to the previously linked article, with the example of Darryl Strawberry and Billy Beane, Strawberry handled the pressure well, while Beane folded under pressure. Seems this has to do with extroversion and introversion. Strawberry says that self-confidence and mental toughness come in to play because they fail 66 percent of the time they come up to hit.

Athletic ability is also important. The top two record holders for stolen bases in the MLB are blacks. Has to do with fast twitch muscle fibers (muscle fibers that exert force faster, but tire out more quickly than slow twitch). So you can see how natural fast twitch muscle fibers help blacks on the field, as well as the base pads, in baseball.

To touch on a previous point, even in the upper end of hitters (the elite ones), there are still marked differences in reaction time (IQ). That makes sense, seeing as I alluded to before that it takes 4/10ths of a second for a 95 MPH fastball to reach home plate.

Why the low rate for Asians? Well, natural athletic ability for one. The second reason is myopia. Those with myopia do have a higher IQ on average (as the correlation is .25), but those that are nearsighted are often late in their reactions to higher speed pitches.  For something anecdotal, I’ve noticed that most Asians are pitchers, either starters of relievers. This article talks about the critical vision skills that pitchers need, and all though Asians are only 2 percent of the MLB, their high visio-spatial ability, along with high reaction times, they are able to succeed as good pitchers in the MLB.

Outfielders are generally fast and quick. Blacks round out a good amount of outfielders, whereas whites round out catcher, as well as a majority of the infield, due to a lot of line-drive hits coming at them, which the player needs high reaction times to be able to catch/field the ball.

Sports prove HBD, just like academic/monetary achievement. Intelligence, as well as physical differences, are pretty much innate. They show in all facets of life. Even though they are obvious to most, no one ever speaks out on it.