NotPoliticallyCorrect

Home » Posts tagged 'reaction time'

Tag Archives: reaction time

Action Video Games, Reaction Time, and Cognitive Ability

1350 words

Research into neural plasticity has been fruitful the past few decades. However, people like Steven Pinker in his book The Blank Slate attempt to undermine the effects of neural plasticity in regards to TBI and IQ, for instance. However, the plasticity of our brains is how our brains evolved (Skoyles and Sagan, 2002). So since our brains are so plastic, then doing certain tasks may help in terms of ‘processing speed’, reaction time and overall cognitive ability, right?

Science Daily reported on a new meta-analysis that took 15 years to complete that looked at how action video games affect reaction time and cognitive performance. What they found was something that I have talked about a bit: that playing these types of games increases one’s reaction time and even their cognitive ability. Unfortunately, the paper is not on Sci-Hub yet, but when it is released on Sci-Hub I will go more in depth on it.

The authors (Benoit et al, 2017) looked at 15 years of papers on action video games and cognitive performance from the year 2000-2015. They focused on war and shooting video games to gauge whether or not there was a causal effect on action video game playing and cognitive performance. They got two meta-analyses out of all of the research they did.

They studied 8,790 people between the ages of 6-40 and gave them a battery of cognitive tests. These tests included spatial attention tasks as well as testing how well one could multi-task while changing their plans in-line with the rules of the game. “It was found that the cognition of gamers was better by one-half of a standard deviation compared to non-gamers.” Though this meta-analysis failed to answer one question: do people who play games have higher cognitive ability or do people with higher cognitive ability play more games? The classic chicken-and-the-egg problem.

They then looked at other studies of 2,883 individuals and partitioned them into 2 groups: groups of people who played action games like war and shooter games whereas the second group played games like SIMS, Tetris and Puzzle (I would loosely term these strategy games as well). They found that both groups played for 8 hours per week, netting 50 hours of gameplay over 12 weeks.

What they found was that the results were overwhelmingly in favor of war and shooting games improving cognition. The interesting thing about these analyses was that it took years to get the data and it is from all over the world, so it doesn’t only hold in America, for instance. Though, in the abstract of the paper (all I have access to at the moment) Benoit et al (2017) write:

Publication bias remains, however, a threat with average effects in the published literature estimated to be 30% larger than in the full literature. As a result, we encourage the field to conduct larger cohort studies and more intervention studies, especially those with more than 30 hours of training.

This is in-line with numerous other papers on the matter of cognitive abilities and action video games. Green and Bavelier (2007) showed that video game players “could tolerate smaller target-distractor distances” whereas “similar effects were observed in non-video-game players who were trained on an action video game; this result verifies a causative relationship between video-game play and augmented spatial resolution.” They found that action video games ‘sharpened vision’ by up to 20 percent. Green and Bavelier (2012) also show that playing action video games may enhance the ability to learn new tasks and that what is learned from playing these types of games “transfers well beyond the training task.”

Green and Bavelier (2003) show that playing action video games showed better visual attention in comparison to those who did not play games. Even those who did not game saw improvement in visual attention which, again, shows that video games have an actual causal effect on these phenomena and it’s not just ‘people with higher cognitive ability choosing to play video games’. (See also Murphy and Spencer, 2009 who show that “There were no other group differences for any task suggesting a limited role for video game playing in the modification of visual attention.“)

Dye, Green, and Bavelier (2009) show that action video games increase reaction time (RT). Variables like videogame-playing when testing cognitive abilities are a huge confound, as can be seen, since people who play action video games have a quicker reaction time than those who do not—which, as I’ve shown, has a causal relationship with game playing since even the controls who did not play action games saw an increase in their RT. Achtman, Green, and Bavelier (2008) show yet again that action video game playing enhances visual attention and overall visual processing.

Green (2008: iii-iv) in an unpublished doctoral dissertation (the first link on Google should be the dissertation) showed the video game players “acquire sensory information more rapidly than NVGPs [non-videogame players]”.

Applebaum et al (2013) showed that action game playing “may be related to enhancements in the initial sensitivity to visual stimuli, but not to a greater retention of information in iconic memory buffers.Bejjanki et al (2014) show that action video game playing “establish[es] … the development of enhanced perceptual templates following action game play.” Cardoso-Leite and Bavelier (2014) show that video games enhance “behavior in domains as varied as perception, attention, task switching, or mental rotation.

Boot, Blakely, and Simons (2011) show that there may be a ‘file-drawer effect’ (publication bias)in terms of action video games increasing cognition, which Benoit et al (2017) acknowledge and push for more open studies.

Unsworth et al (2015) state that “nearly all of the relations between video-game experience and cognitive abilities were near zero.” So, there are numerous studies both for and against this (most of the studies for this being done by Green and Bavelier), and so this meta-analysis done by Benoit et al (2017) may finally begin to answer the question: Does playing action video games increase cognitive ability, increase visual attention and increase reaction time? The results of this new meta-analysis suggest yes, and it may have implications for IQ testing.

Richardson and Norgate (2014) in their paper Does IQ Really Predict Job Performance? state that there are numerous other reasons why some individuals may have slower RTs, one of the variables being action video game playing, along with anxiety, motivation, and familiarity with the equipment used, meaning that if one is experienced in video game playing—action games specifically—it may cause differences between individuals that do not come down to ‘processing speed’ or native ability, as is usually claimed (and with such low correlations of .2-.3 for reaction time and IQ, other factors must mediate the relationship that are not genetic in nature).

Now, let’s say the effect is as large as Benoit et al (2017) say it is at one-third of a SD. Would this mean that one would need to attempt to control for video game playing while testing, say, IQ or RT? I believe the answer is definitely pointing in that direction because it is clear—with the mounting evidence—that action video games can reduce RT and thusly confound certain tests. Action video game playing may be a pretty large confound in terms of the outcomes of IQ tests if these new meta-analyses from Benoit et al (2017) hold up. If this does hold up and playing action video games does affect both RT and cognitive ability at one-third of an SD (about 5 points), then the case can be made that this must be controlled for due to confounding the relationship.

In sum, if these effects from this new meta-analysis hold and can be replicated by other studies, then that’s a whole other variable that needs to be accounted for when testing IQ and RT. RT is a complicated variable and, according to Khodaddi et al (2014)The relationship between reaction time and IQ is too complicated and revealing a significant correlation depends on various variables (e.g. methodology, data analysis, instrument etc.).” This, is in my view, one reason why RT should be tossed out as a ‘predictor of g‘ (whatever that is), as it is not a reliable measure and does not ‘test’ what it is purported to test.

HBD and Sports: Baseball and Reaction Time

2050 words

If you’ve ever played baseball, then you have first-hand experience on what it takes to play the game, one of the major abilities you need is a quick reaction time. Baseball players are in the upper echelons in regards to pitch recognition and ability to process information (Clark et al, 2012).

Some people, however, believe that there is an ‘IQ cutoff’ in regards to baseball; since general intelligence is supposedly correlated with reaction time (RT), then those with higher RTs must have higher intelligence and vice-versa. However, this trait—in a baseball context—is trainable to an extent. To those that would claim that IQ would be a meaningful metric in baseball I pose two question: would higher IQ teams, on average, beat lower IQ teams and would higher IQ people have better batting averages (BAs) than lower IQ people? This, I doubt, because as I will cover, these variables are trainable and therefore talking about reaction time in the MLB in regards to intelligence is useless.

Meden et al (2012) tested athlete and non-athlete college students on visual reaction time (VRT). They tested the athletes’ VRT once, while they tested the non-athletes VRT two times a week for a 3 week period totaling 6 tests. Men ended up having higher VRTs in comparison to women, and athletes had better VRTs than non-athletes. So therefore, this study proves that VRT is a trainable variable. If VRT can be improved with training, then hitting and fielding can also be trained as well.

Reaction time training is the communication between the brain, musculoskeletal system and spinal cord, which includes both physical and cognitive training. So since VRT can be trained, then it makes logical sense that Major League hitting and fielding can be trained as well.

David Epstein, author of The Sports Gene says that he has a faster reaction time than Albert Pujols:

One of the big surprises for me was that pro athletes, particularly in baseball, don’t have faster reflexes on average than normal people do. I tested faster than Albert Pujols on a visual reaction test. He only finished in the 66thpercentile compared to a bunch of college students.

It’s not a superior RT that baseball players have in comparison to the normal population, says Epstein, but “learned perceptual skills that the MLB players don’t know they learned.” Major League baseball players do have average reaction times (Epstein, 2013: 1) but a far superior visual acuity. Most pro-baseball players had visual acuity of 20/13, with some players having 20/11; the theoretical best visual acuity that is possible is 20/8 (Clark et al, 2012). Laby, Kirschen, and Abbatine show that 81 percent of the 1500 Major and Minor League Mets and Dodgers players had visual acuities of 20/15 or better, along with 2 percent of players having a visual acuity of 20/9.2. Baseball players average a 20/13 visual acuity with the best eyesight humanly possible being 20/8. (Laby et al, 1996).

So it’s not faster RT that baseball players have, but a better visual acuity—on average—in comparison to the general population. Visual reaction time is a highly trainable variable, and so since MLB players have countless hours of practice, they will, of course, be superior on that variable.

Clark et al (2012) showed that high-performance vision training can be performed at the beginning of the season and maintained throughout the season to improve batting parameters. They also state that visual training programs can help hitters, since the eyes account for 80 percent of the information taken into the brain. Reichow, Garchow, and Baird (2011) conclude that a “superior ability to recognize pitches presented via tachistoscope may correlate with a higher skill level in batting.” Clark et al (2012) posit that their training program will help batters to better recognize the spot of the ball and the pitcher’s finger position in order to better identify different pitches. Clark et al (2012) conclude:

The University of Cincinnati baseball team, coaches and vision performance team have concluded that our vision training program had positive benefits in the offensive game including batting and may be providing improved play on defense as well. Vision training is becoming part of out pre-season and in season conditioning program as well as for warmups.

Classe et al (1997) showed that VRT was related to batting, but not fielding or pitching skill. Further, there was no statistically significant difference observed between VRT and age, race or fielding. Therefore, we can say that VRT has no statistical difference on race and does not contribute to any racial differences in baseball.

Baseball and basketball athletes had faster RTs than non-athletes (Nakamoto and Mori, 2008). The Go/NoGo response that is typical of athletes is most certainly trainable. Kida et al (2005) showed that intensive practice improved the Go/NoGo reaction time, but not simple reaction time. Kida et al (2005: 263-264) conclude that simple reaction time is not an accurate indicator of experience, performance or success in sports; Go/NoGo can be improved by practice and is not innate (but simple reaction time was not altered) and the Go/NoGo reaction time can be “theoretically shortened toward a certain value determined by the simple reaction time proper to each individual.

In baseball players in comparison to a control group, readiness potential was significantly shorter for the baseball players (Park, Fairweather, and Donaldson, 2015).  Hand-eye coordination, however, had no effect on earned run average (ERA) or batting average in a sample of 410 Major and Minor League members of the LA Dodgers (Laby et al, 1997).

So now we know that VRT can be trained, VRT shows no significant racial differences, and that Go/NoGo RT can be improved by practice. Now a question I will tackle is: can RT tell us anything about success in baseball and is RT related to intelligence/IQ?

Khodadi et al (2014) conclude that “The relationship between reaction time and IQ is too complicated and revealing a significant correlation depends on various variables (e.g. methodology, data analysis, instrument etc.).” So since the relationship is too complicated between the two variables, mostly due to methodology and the instrument used, RT is not a good correlate of IQ. It can, furthermore, be trained (Dye, Green, and Bavelier, 2012).

In the book A Question of Intelligence, journalist Dan Seligman writes:

In response, Jensen made two points: (1) The skills I was describing involve a lot more than just reaction time, they also depended heavily on physcial coordination and endless practice. (2) It was, however, undoubtedly true that there was some IQ requirement-Jensen guessed it might be around 85- below which you could never recruit for major league baseball. (About one-sixth of Americans fall below 85).

I don’t know where Jensen grabbed the ‘IQ requirement’ for baseball, which he claims to be around 85 (which is at the black average in America). This quote, however, proves my point that there is way more than RT involved in hitting a baseball, especially a Major League fastball:

Hitting a baseball traveling at 100 mph is often considered one of the most difficult tasks in all of sports. After all, if you hit the ball only 30% of the time, baseball teams will pay you millions of dollars to play for them. Pitches traveling at 100 mph take just 400 ms to travel from the pitcher to the hitter. Since the typical reaction time is 200 ms, and it takes 100 ms to swing the bat, this leaves just 100 ms of observation time on which the hitter can base his swing.

This lends more credence to the claim that hitting a baseball is more than just quick reflexes; considerable training can be done to learn certain cues that certain pitchers use; for instance, like identifying different pitches a particular pitcher does with certain arm motions coming out of the stretch. This, as shown above in the Epstein quote, is most definitely a trainable variable.

Babe Ruth, for instance, had better hand-eye coordination than 98.8 percent of the population. Though that wasn’t why he was one of the greatest hitters of all time; it’s because he mastered all of the other variables in regards to hitting, which are learnable and not innate.

Witt and Proffitt (2005) showed that the apparent ball size is correlated with batting average, that is, the better batters fared at the plate, the bigger they perceived the ball to be so they had an easier time hitting it. Hitting has much less to do with reaction time and much more to do with prediction, as well as the pitching style of the pitcher, his pitching repertoire, and numerous other factors.

It takes a 90-95 mph fast ball about 400 milliseconds to reach home plate. It takes the brain 100 milliseconds to process the image that the eyes are taking in, 150 milliseconds to swing and 25 milliseconds for his brain to send a signal to his body to swing. This leaves the hitter with 125 milliseconds left to hit the incoming fastball. Clearly, there is more to hitting than reaction time, especially when all of these variables are in play. Players have .17 seconds to decide whether or not to hit a pitch and where to place their bat (Clark et al, 2012)

A so-called ‘IQ cutoff’ for baseball does exist, but only because IQs lower than 85 (once you begin to hit the 70s range, especially the lower levels) indicate developmental disorders. Further, the 85-115 IQ range encompasses 68 percent of the population. However, RT is not even one of the most important factors in hitting; numerous other (trainable) variables influence fastball hitting, and all of the best players in the world employ these strategies. People may assume that since intelligence and RT are (supposedly) linked, that baseball players, since they (supposedly) have quick RTs. Nevertheless, if quick RTs were correlated with baseball profienciency—namely, in hitting, then why are Asians 1.2 percent of the players in the MLB? Maybe because RT doesn’t really have anything to do with hitting proficiency and other variables have more to do with it.

People may assume that since intelligence and RT are (supposedly) linked, that baseball players, since they (supposedly) have quick RTs then they must be intelligent and therefore there must be an IQ cutoff because intelligence/g and RT supposedly correlate. However, I’ve shown 2 things: 1) RT isn’t too important to hitting at an elite level and 2) more important skills can be acquired in hitting fastballs, most notable, in my opinion, is pitch verification and the arm location of the pitcher. The Go/NoGo RT can also be trained and is, arguably, one of the most important training systems for elite hitting. Clearly, elite hitting is predicated on way more than just a quick RT; and most of the variables that are involved in elite hitting are most definitely trainable, as reviewed in this article.

People, clearly, make unfounded claims without having any experience in something. It’s easy to make claims about something when you’re just looking at numbers and attempting to draw conclusions based on data. But it’s a whole other ballgame (pun intended) when you’re up at the plate yourself or coaching someone on how to hit or play in the infield. These baseless claims would be avoided a lot more if only the people who make these claims had any actual athletic experience. If so, they would know of the constant repetition that goes into hitting and fielding, the monotonous drills you have to do everyday until your muscle memory is trained to flawlessly—without even thinking about it—throw a ball from shortstop to first base.

Practice, especially Major League practice, is pivotal to elite hitting; only with elite practice can a player learn how to spot the ball and the pitcher’s finger position to quickly identify the pitch type in order to decide if he wants to swing or not. In conclusion, a whole slew of cognitive/psychological abilities are involved in the upper echelons of elite baseball, however a good majority of the traits needed to succeed in baseball are trainable, and RT has little to do with elite hitting.

(When I get time I’m going to do a similar analysis like what I wrote about in the article on my possible retraction of my HBD and baseball article. Blacks dominate in all categories that matter, this holds for non-Hispanic whites and blacks as well as Hispanic blacks and whites, read more here. Nevertheless, I may look at the years 1997-2017 and see if anything has changed from the analysis done in the late 80s. Any commentary on that matter is more than welcome.)