Home » Brain Injury » Traumatic Brain Injury and IQ

Traumatic Brain Injury and IQ

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 78 other followers

Follow me on Twitter

JP Rushton

Richard Lynn

L:inda Gottfredson


1900 words

What is the relationship between traumatic brain injury (TBI) and IQ? Does IQ decrease? Stay the same? Increase? A few studies have looked at the relationship between TBI and IQ, and the results may be quite surprising to some. Tonight I will look through a few studies and see what the relationship is between TBI and IQ—does IQ decrease substantially or is there only a small decrease? Does it decrease for all subtests or only some?

TBI and IQ

In a sample of 72 people with TBI who had significant brain injuries had an average IQ of 90 (study 1; Bigler, 1995). Bigler also says that whatever correlation exists between brain size and IQ “does not persist post injury” (pg 387). This finding has large implications: can there be a minimal hit to IQ depending on age/severity of injury/brain size/education level?

As will be seen when I review another study on IQ and brain injury, every individual in the cohort in Bigler (1995) was tested after 42 days of brain injury. This does matter, as I will get into below.

Table 1 in study 1 shows that whatever positive relationship between IQ and brain size that is there before injury does not persist after injury (Bigler, 1995: 387). Study 1 showed that, even with mild-to-severe brain damage, there was little change in measured IQ—largely because the correlation between brain size and IQ is .51 at the high end (which I will use—the true correlation is between .24 [Pietschnig et al, 2015] to .4 [Rushton and Ankney, 2009]), this means that if the correlation were to be that high, brain size would only explain 25 percent of the variation in IQ (Skoyles, 1999). That leaves a lot of room for other reasons for differences in brain size and IQ in individuals and groups.

In study 2 (Bigler, 1995: 389-391), he looked into whether or not there were differences in IQ between high and low brain volume people (95 men). Results summed in table 3 (pg 390). Those with low brain volume (1185), aged 28, had an IQ of 82.61 while those with high brain volume (1584), aged 34 had an IQ of 92 (both cohorts had similar education). Bigler showed in study 1 IQ was maintained post injury, so we can say that this was their IQ preinjury.

In table 2, Bigler (1995) compares IQs and brain volumes of mild-to-moderate and moderate-to-severe individuals with TBI. Brain volume in the moderate-to-severe group was 1289.2 whereas for the mild-to-moderate TBI-suffering individuals had a mean brain volume of 1332.9. Amazingly, both groups had IQ scores in the normal range (90.0 for moderate-to-severe TBI and 90.7 for individuals suffering from mild-to-moderate TBI. In study 3, Bigler (1995) shows that trauma-induced atrophic changes in the brain aren’t related to IQ postinjury, nor to the amount of focal lesion volume.

Nevertheless, Bigler (1995) shows that those with bigger brains had less of a cognitive hit after TBI than those with smaller brains. PumpkinPerson pointed me to a study that shows that TBI stretches far back into our evolutionary history, with TBI seen in australopithecine fossils along with erectus fossils found throughout the world. This implies that TBI was a driver for brain size (Shivley et al, 2012); if the brain is bigger, then if/when TBI is acquired, the cognitive hit will be lessened (Stern, 2002). This is a great theory for explaining why we have large brains despite the negatives that come with them—if we were to acquire TBI in our evolutionary past, then the hit to our cognition would not be too great, and so we could still pass our genes to the next generation.

The fact that changes in IQ are minimal when brain damage is acquired shows that brain size isn’t as important as some brain-size-fetishists would like you to believe. Though, preinjury (PI) IQ was not tested, I have one study where it was.

Wood and Rutterford (2006) showed results similar to Bigler (1995)—minimal change to IQ occurs after TBI. The whole cohort pre-injury (PI) had a 99.79 IQ. T1 (early measure) IQ for the cohort was 90.96 while T2 (late measure) IQ for the cohort was 92.37. For people with greater than 11th-grade education (n=30), IQ decreased from 106.57 PI to 95.19 in T1 to 100.17 in T2. For people with less than an 11th-grade education (n=44), IQ PI was 95.16 and decreased to 86.99 in T1 and increased to 87.96 in T2. Male (n=51) and female (n=23) were similar, with male PI IQ being 99.04 to women’s 101.44 with a 90.13 IQ in T1 for men with a 90.72 IQ in T1 for women. In T2 for men it was 92.94 and for women, it was 92.83. So this cohort shows the same trends as Bigler (1995).

The most marked difference in subtests post-injury was in vocabulary (see table 3) with similarities staying the same, and digit symbol, and block design increasing between T1 and T2. Neither group differed between T1 and T2. The only significant association in performance change over time was years of education. Less educated people were at greater risk for cognitive decline (see table 2).

The difference for PI IQ after T2 for less educated people was 7.2 whereas for more educated people it was 6.4. Though more educated people gained back more IQ points between T1 and T2 (4.98 points) compared to less educated people (.97 IQ points). And: “The participants in our study represent a subgroup of patients with severe head injury reported in a larger study assessing long‐term psychosocial outcome.

Bigler (1995) didn’t have PI IQ, but Wood and Rutterford (2006) did, and from T1 to T2 (Bigler 1995 tested what would be equivalent to T1 in the Wood and Rutterford 2006 study), IQ hardly increased for those with lower education (.97 points) but substantially increased for those with higher education (4.98 points) with there being a similar difference between PI IQ and T2 IQ for both groups.

Brain-derived neurotrophic protective factor (BDNF) also promotes survival and synaptic plasticity in the human brain (Barbey et al, 2014). They genotyped 156 Vietnam War soldiers with frontal lobe lesion and “focal penetrating head injuries” for the BDNF polymorphism. Though they did find differences in the groups with and without the BDNF polymorphism, writing that there were “substantial average differences between these groups in general intelligence (≈ half a standard deviation or 8 IQ points), verbal comprehension (6 IQ points), perceptual organization (6 IQ points), working memory (8 IQ points), and processing speed (8 IQ points) after TBI” (Barbey et al, 2014). This supports the hypothesis that BDNF is protective against TBI; and since BDNF was important in our evolutionary history which is secreted by the brain while endurance running (Raichlen and Polk, 2012), this could have also been another protective factor against hits to cognition that were acquired, say, during hunts or fights.

Nevertheless, one study found in a sample of 181 children Crowe et al (2012) found that children with mild-to-moderate TBI had IQ scores in the average range, whereas children with severe TBI had IQ scores in the low average range (80 to 90; table 3).

Infants with mild TBI had IQ scores of 99.9 (n=20) whereas infants with moderate TBI has IQs of 98.0 (n=23) and infants with severe TBI had IQs of 90.7 (n=7); preschoolers with mild TBI had IQ scores of 103.8 (n=11), whereas preschoolers with moderate TBI had IQ scores of 100.1 (n=19) and preschoolers with severe TBI had IQ scores of 85.8 (n=13); middle schoolers with mild TBI had IQ scores of 93.9 (n=10), whereas middle schoolers with moderate TBI had IQ scores of 93.5 (n=21), and middle schoolers with severe TBI had IQ scores of 86.1 (n=14); finally, children with mild TBI in late childhood had a mean FSIQ of 107.3 (n=17), while children with moderate TBI had IQs of 99.5 in late childhood (n=15), and children with severe TBI in late childhood had FSIQs of 94.7 (Crowe et al, 2012; table 3). This shows that age of acquisition and severity influence IQ scores (along with their subtests), and that brain maturity matters for maintaining average intelligence post-TBI. Königs et al (2016) also show the same trend; the outlook is better for children with mild TBI, while children faired far worse with severe TBI compared to mild when compared to adults (also seen in Crowe et al, 2012).

People who got into motor vehicle accidents suffered a loss of 14 IQ points (n=33) after being tested 20 months postinjury (Parker and Rosenblum, 1996). The WAIS-IV Technical and Interpretive Manual also shows a similar loss of 16 points (pg 111-112), however, the 22 subjects were tested within 6 to 18 months within acquiring their TBI, with no indication of whether or not a follow-up was done. IQ will recover postinjury, but education, brain size, age, and severity all are factors that contribute to how many IQ points will be gained. However, adults who suffer mild, moderate, and severe TBIs have IQs in the normal range. TBI severity also had a stronger effect on children aged 2 to 7 years of age at injury, with white matter volume and results on the Glasgow Coma Scale (which is used to assess consciousness after a TBI) were related to the severity of the injury (Levin, 2012).


TBI can occur with a minimal hit to IQ (Bigler, 1995; Wood and Rutterford, 2006; Crowe et al, 2012). IQs can still be in the average range at a wide range of ages/severities, however the older one is when they suffer a TBI, the more likely it is that they will incur little to no loss in IQ (depending on the severity, and even then they are still in the average range). It is interesting to note that TBI may have been a selective factor in our brain evolution over the past 3 million years from australopithecines to erectus to Neanderthals to us. However, the fact that people with severe TBI can have IQ scores in the normal range shows that the brain size/IQ correlation isn’t all it’s cracked up to be.


Barbey AK, Colom R, Paul E, Forbes C, Krueger F, Goldman D, et al. (2014) Preservation of General Intelligence following Traumatic Brain Injury: Contributions of the Met66 Brain-Derived Neurotrophic Factor. PLoS ONE 9(2): e88733.

Bigler, E. D. (1995). Brain morphology and intelligence. Developmental Neuropsychology,11(4), 377-403. doi:10.1080/87565649509540628

Crowe, L. M., Catroppa, C., Babl, F. E., Rosenfeld, J. V., & Anderson, V. (2012). Timing of Traumatic Brain Injury in Childhood and Intellectual Outcome. Journal of Pediatric Psychology,37(7), 745-754. doi:10.1093/jpepsy/jss070

Green, R. E., Melo, B., Christensen, B., Ngo, L., Monette, G., & Bradbury, C. (2008). Measuring premorbid IQ in traumatic brain injury: An examination of the validity of the Wechsler Test of Adult Reading (WTAR). Journal of Clinical and Experimental Neuropsychology,30(2), 163-172. doi:10.1080/13803390701300524

Königs, M., Engenhorst, P. J., & Oosterlaan, J. (2016). Intelligence after traumatic brain injury: meta-analysis of outcomes and prognosis. European Journal of Neurology,23(1), 21-29. doi:10.1111/ene.12719

Levin, H. S. (2012). Long-term Intellectual Outcome of Traumatic Brain Injury in Children: Limits to Neuroplasticity of the Young Brain? Pediatrics, 129(2), e494–e495.

Parker, R. S., & Rosenblum, A. (1996). IQ loss and emotional dysfunctions after mild head injury incurred in a motor vehicle accident. Journal of Clinical Psychology,52(1), 32-43. doi:10.1002/(sici)1097-4679(199601)52:1<32::aid-jclp5>;2-1

Pietschnig, J., Penke, L., Wicherts, J. M., Zeiler, M., & Voracek, M. (n.d.). Meta-Analysis of Associations Between Human Brain Volume And Intelligence Differences: How Strong Are They and What Do They Mean? SSRN Electronic Journal. doi:10.2139/ssrn.2512128

Raichlen, D. A., & Polk, J. D. (2012). Linking brains and brawn: exercise and the evolution of human neurobiology. Proceedings of the Royal Society B: Biological Sciences,280(1750), 20122250-20122250. doi:10.1098/rspb.2012.2250

Rushton, J. P., & Ankney, C. D. (2009). Whole Brain Size and General Mental Ability: A Review. The International Journal of Neuroscience, 119(5), 692–732.

Shively, S., Scher, A. I., Perl, D. P., & Diaz-Arrastia, R. (2012). Dementia Resulting From Traumatic Brain Injury: What Is the Pathology? Archives of Neurology, 69(10), 1245–1251.

Skoyles R. J. (1999) HUMAN EVOLUTION EXPANDED BRAINS TO INCREASE EXPERTISE CAPACITY, NOT IQ. Psycoloquy: 10(002) brain expertise

Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society,8(03), 448-460. doi:10.1017/s1355617702813248

Wood, R. L., & Rutterford, N. A. (2006). Long‐term effect of head trauma on intellectual abilities: a 16‐year outcome study. Journal of Neurology, Neurosurgery, and Psychiatry, 77(10), 1180–1184.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Please keep comments on topic.

Charles Murray

Arthur Jensen

Blog Stats

  • 147,892 hits
Follow NotPoliticallyCorrect on

suggestions, praises, criticisms

If you have any suggestions for future posts, criticisms or praises for me, email me at
%d bloggers like this: