NotPoliticallyCorrect

Home » Posts tagged 'Sex Differences'

Tag Archives: Sex Differences

Just-so Stories: Sex Differences in Color Preferences

1550 words

Women may be hardwired to prefer pink“, “Study: Why Girls Like Pink“, “Do girls like pink because of their berry-gathering female ancestors?“, “Pink for a girl and blue for a boy – and it’s all down to evolution” are some of the popular news headlines that came out 12 years ago when Hurlbert and Ling (2007) published their study Biological components of sex differences in color preference. They used 208 people, 171 British Caucasians, 79 of whom were male, 37 Han Chinese (19 of whom were male). Hurlbert and Ling (2007) found that “females prefer colors with ‘reddish’ contrast against the background, whereas males prefer the opposite.

Both males and females have a preference for blueish and reddish hues, and so, women liking pink is an evolved trait, on top of having a preference for blue. The authors “speculate that this sex difference arose from sex-specific functional specializations in the evolutionary division of labour.” So specializing for gathering berries, the “female brain” evolved “trichromatic adaptations”—that is, three colors are seen—which is the cause for women preferring “redder” hues. Since women were gatherers—while men hunters—they needed to be able to discern redder/pinker hues to be able to gather berries. Hurlbert and Ling (2007) also state that there is an alternative explanation which “is the need to discriminate subtle changes in skin color due to emotional states and social-sexual signals []; again, females may have honed these adaptations for their roles as care-givers and ‘empathizers’ [].

The cause for sex differences in color preference are simple: men and women faced different adaptive problems in their evolutionary history—men being the hunters and women the gatherers—and this evolutionary history then shaped color preferences in the modern world. So women’s brains are more specialized for gathering-type tasks, as to be able to identify ripe fruits with a pinker hue, either purple or red. Whereas for males they preferred green or blue—implying that as men evolved, the preference for these colors was due to the colors that men encountered more frequently in their EEA (evolutionary environment of adaptedness).

He et al (2011) studied 436 Chinese college students from a Chinese university. They found that men preferred “blue > green > red > yellow > purple > orange > white > black > pink > gray > brown,” while women preferred “purple > blue > yellow > green > pink > white > red > orange > black > gray > brown” (He et al, 2011: 156). So men preferred blue and green while women preferred pink, purple and white. Here is the just-so story (He et al, 2011: 157-158):

According to the Hunter-Gatherer Theory, as a consequence of an adaptive survival strategy throughout the hunting-gathering environment, men are better at the hunter-related task, they need more patience but show lower anxiety or neuroticism, and, therefore would prefer calm colors such as blue and green; while women are more responsible to the gatherer-related task, sensitive to the food-related colors such as pink and purple, and show more maternal nurturing and peacefulness (e.g., by preferring white).

Just-so stories like this come from the usual suspects (e.g., Buss, 2005; Schmidt, 2005). Regan et al (2001) argue that “primate colour vision has been shaped by the need to find coloured fruits amongst foliage, and the fruits themselves have evolved to be salient to primates and so secure dissemination of their seeds.” Men are more sensitive to blue-green hues in these studies, and, according to Vining (2006), this is why men prefer these colors: it would have been easier for men to hunt if they could discern between blue and green hues; that men like these kinds of colors more than the other “feminine” colors is evidence in favor of the “hunter-gatherer” theory.

berries

(Image from here.)

So, according to evolutionary psychologists, there is an evolutionary reason for these sex differences in color preferences. If men were more likely to like blueish-greenish hues over red ones, then we can say that it was a specific adaptation from the hunting days: men need to be able to ascertain color differences which would have them be better hunters—preferring blue for, among other reasons, the ability to notice sky and water, as they would be better hunters if they did. And so, according to the principle of evolution by natural selection, the men who could ascertain these colors and hues had better reproductive success over those that could not, and so those men passed their genes onto the next generation, which included those color-sensing genes. The same is true for women: that women prefer pinkish, purpleish hues is evidence that, in an evolutionary context, they needed to ascertain pinkish, purpleish colors as to identify ripe fruits. And so again, according to this principle of natural selection, these women who could better ascertain colors and hues more likely to be seen in berries passed their genes on to the next generation, too.

This theory hinges, though, on Man the Hunter and Woman the Gatherer. Men ventured out to hunt—which explains the man’s color preferences—while women stayed at the ‘home’ and took care of the children and looked to gather berries—which explains women color preferences (gathering pink berries, discriminating differences in skin color due to emotional states). So the hypothesis must have a solid evolutionary basis—it makes sense and comports to the data we have, so it must be true, right?

Here’s the thing: boys and girls didn’t always wear blue and pink respectively; this is something that has recently changed. Jasper Pickering, writing for The Business Insider explains this well in an interview with color expert Gavin Moore:

“In the early part of the 20th Century and the late part of the 19th Century, in particular, there were regular comments advising mothers that if you want your boy to grow up masculine, dress him in a masculine colour like pink and if you want your girl to grow up feminine dress her in a feminine colour like blue.”

“This was advice that was very widely dispensed with and there were some reasons for this. Blue in parts of Europe, at least, had long been associated as a feminine colour because of the supposed colour of the Virgin Mary’s outfit.”

“Pink was seen as a kind of boyish version of the masculine colour red. So it gradually started to change however in the mid-20th Century and eventually by about 1950, there was a huge advertising campaign by several advertising agencies pushing pink as an exclusively feminine colour and the change came very quickly at that point.”

While Smithsonian Magazine quotes the Earnshaw Infants Department (from 1918):

The generally accepted rule is pink for the boys, and blue for the girls. The reason is that pink , being a more decided and stronger color, is more suitable for the boy, while blue, which is more delicate and dainty, is prettier for the girl.

So, just like “differences” in “cognitive ability (i.e., how if modern-day “IQ” researchers would have been around in antiquity they would have formulated a completely different theory of intelligence and not used Cold Winters Theory), if these EP-minded researchers had been around in the early 20th century, they’d have seen the opposite of what they see today: boys wearing pink and girls wearing blue. What, then, could account for such observations? I’d guess something like “Boys like pink because it’s a hue of red and boys, evolved as hunters, had to like seeing red as they would be fighting either animals or other men and would be seeing blood a majority of the time.” As for girls liking blue, I’d guess something like “Girls had to be able to ascertain green leaves from the blue sky, and so, they were better able to gather berries while men were out hunting.”

That’s the thing with just-so stories: you can think of an adaptive story for any observation. As Joyner, Boros, and Fink (2018: 524) note for the Bajau diving story and the sweat gland story “since the dawn of the theory of evolution, humans have been incredibly creative in coming up with evolutionary and hence genetic narratives and explanations for just about every human trait that can be measured“, and this can most definitely be said for the sex differences in color preferences story. We humans are very clever at making everything an adaptive story when there isn’t one to be found. Even if it can be established that there are such things as “trichomatic adaptations” that evolved for men and women liking the colors they do, then, the combination of functional effect (women liking pink for better gathering and men liking blue and green for better hunting) and that the trait truly was “selected-for” does not license the claim that selection acted on the specific trait in question since we cannot “exclude the possibility that selection acted on some other pleiotropic effect of the mutation” (Nielsen, 2009).

In sum, the causes for sex differences in color preferences, today, makes no sense. These researchers are just looking for justification for current cultural/societal trends in which sex likes which colors and then weaving “intricate” adaptive stories in order to claim that part of this is due to men’s and women’s “different” evolutionary history—man as hunter and woman as gatherer. However, due to how quickly things change in culture and society, we can be asking questions we would not have asked before due to how quickly society changes, and then ascribe evolutionary causes for out observations. As Constance Hilliard (2012: 85) writes, referring to Professor Michael Billig’s article A dead idea that will not lie down (in reference to race science), “… scientific ideas did not develop in a vacuum but rather reflected underlying political and economic trends.

Men Are Stronger Than Women

1200 words

The claim that “Men are stronger than women” does not need to be said—it is obvious through observation that men are stronger than women. To my (non-)surprise, I saw someone on Twitter state:

“I keep hearing that the sex basis of patriarchy is inevitable because men are (on average) stronger. Notwithstanding that part of this literally results from women in all stages of life being denied access to and discourage from physical activity, there’s other stuff to note.”

To which I replied:

“I don’t follow – are you claiming that if women were encouraged to be physically active that women (the population) can be anywhere *near* men’s (the population) strength level?”

I then got told to “Fuck off,” because I’m a “racist” (due to the handle I use and my views on the reality of race). In any case, while it is true that part of this difference does, in part, stem from cultural differences (think of women wanting the “toned” look and not wanting to get “big and bulky”—as if it happens overnight) and not wanting to lift heavy weights because they think they will become cartoonish.

Here’s the thing though: Men have about 61 percent more muscle mass than women (which is attributed to higher levels of testosterone); most of the muscle mass difference is allocated to the upper body—men have about 75 percent more arm muscle mass than women which accounts for 90 percent greater upper body strength in men. Men also have about 50 percent more muscle mass than women, while this higher percentage of muscle mass is then related to men’s 65 percent greater lower body strength (see references in Lassek and Gaulin, 2009: 322).

Men have around 24 pounds of skeletal muscle mass compared to women, though in this study, women were about 40 percent weaker in the upper body and 33 percent weaker in the lower body (Janssen et al, 2000). Miller et al (1993) found that women had a 45 percent smaller cross-section area in the brachii, 45 in the elbow flexion, 30 percent in the vastus lateralis, and 25 percent smaller CSA in the knee extensors, as I wrote in Muscular Strength by Gender and Race, where I concluded:

The cause for less upper-body strength in women is due the distribution of women’s lean tissue being smaller.

Men have larger fibers, which in my opinion is a large part of the reason for men’s strength advantage over women. Now, even if women were “discouraged” from physical activity, this would be a problem for their bone density. Our bones are porous, and so, by doing a lot of activity, we can strengthen our bones (see e.g., Fausto-Sterling, 2005). Bishop, Cureton, and Collins (1987) show that the sex difference in strength in close-to-equally-trained men and women “is almost entirely accounted for by the difference in muscle size.” Which lends credence to my claim I made above.

Lindle et al (1997) conclude that:

… the results of this study indicate that Con strength levels begin to decline in the fourth rather than in the fifth decade, as was previously reported. Contrary to previous reports, there is no preservation of Ecc compared with Con strength in men or women with advancing age. Nevertheless, the decline in Ecc strength with age appears to start later in women than in men and later than Con strength did in both sexes. In a small subgroup of subjects, there appears to be a greater ability to store and utilize elastic energy in older women. This finding needs to be confirmed by using a larger sample size. Muscle quality declines with age in both men and women when Con peak torque is used, but declines only in men when Ecc peak torque is used. [“Con” and “Ecc” strength refer to concentric and eccentric actions]

Women are shorter than men and have less fat-free muscle mass than men. Women also have a weaker grip (even when matched for height and weight, men had higher levels of lean mass compared to women (92 and 79 percent respectively; Nieves et al, 2009). So men had greater bone mineral density (BMD) and bone mineral content (BMC) compared to women. Now do some quick thinking—do you think that one with weaker bones could be stronger than someone with stronger bones? If person A had higher levels of BMC and BMD compared to person B, who do you think would be stronger and have the ability to do whatever strength test the best—the one with the weaker or stronger muscles? Quite obviously, the stronger one’s bones are the more weight they can bare on them. So if one has weak bones (low BMC/BMD) and they put a heavy load on their back, while they’re doing the lift their bones could snap.

Alswat (2017) reviewed the literature on bone density between men and women and found that men had higher BMD in the hip and higher BMC in the lower spine. Women also had bone fractures earlier than men. Some of this is no doubt cultural, as explained above. However, even if we had a boy and a girl locked in a room for their whole lives and they did the same exact things, ate the same food, and lifted the same weights, I would bet my freedom that there still would be a large difference between the two, skewing where we know it would skew. Women are more likely to suffer from osteoporosis than are men (Sözen, Özışık, and Başaran 2016).

So if women have weaker bones compared to men, then how could they possibly be stronger? Even if men and women had the same kind of physical activity down to the tee, could you imagine women being stronger than men? I couldn’t—but that’s because I have more than a basic understanding of anatomy and physiology and what that means for differences in strength—or running—between men and women.

I don’t doubt that there are cultural reasons that account for the large differences in strength between men and women—I do doubt, though, that the gap can be meaningfully closed. Yes, biology interacts with culture. So the developmental variables that coalesce to make men “Men” and those that coalesce to make women “Women” converge in creating the stark differences in phenotype between the sexes which then explains how the sex differences between the sexes manifest itself.

Differences in bone strength between men and women, along with distribution of lean tissue, differences in lean mass, and differences in muscle size explain the disparity in muscular strength between men and women. You can even imagine a man and woman of similar height and weight and they would, of course, look different. This is due to differences in hormones—the two main players being testosterone and estrogen (see Lang, 2011).

So yes, part of the difference in strength between men and women are rooted in culture and how we view women who strength train (way more women should strength train, as a matter of fact), though I find it hard to believe that even if the “cultural stigma” of the women who lifts heavy weights at the gym disappeared overnight, that women would be stronger than men. Differences in strength exist between men and women and this difference exists due to the complex relationship between biology and culture—nature and nurture (which cannot be disentangled).

Why Are Women Lighter than Men? Skin Color and Sexual Selection

1550 words

Skin color differences between the sexes are always discussed in terms of women being lighter than men, but never men being darker than women. This is seen in numerous animal studies (some reviewed by Rushton and Templer, 2012; read rebuttal here; also see Ducrest, Keller, and Roulin, 2008). Though, the colors that evolved on the animal’s fur due to whatever mate choices are irrelevant to the survival capabilities that the fur, feathers etc give to the organism in question. So, when we look at humans, we lost our protective body hair millions of years ago (Lieberman, 2015), and with that, we could then sweat. So since furlessness evolved in the lineage Homo, there was little flexibility in what could occur due to environmental pressures on skin color in Africa. It should be further noted that, as Nina Jablonski writes in her book Living Color: The Biological and Social Meaning of Skin Color (2012, pg 74)

No researchers, by the way, have explored the opposite possibility, that women deliberately selected darker men!

One hypothesis proposes that lighter skin in women first arose as a byproduct due to the actions of differing levels of hormones in the sexes—with men obviously having higher levels of testosterone, making them darker them women. So according to this hypothesis, light-skinned women evolved since men could tell high-quality from low-quality mates as well as measure hormonal status and childbearing potential, which was much easier to do with lighter- than darker-skinned women.

Another hypothesis put forth is that further from the equator, sexual competition between women would have increased for mates since mates were depleted, and so light skin evolved since men found it more beautiful. Thus, women living at higher latitudes were lighter than women living at lower latitudes because men had to go further to hunt which meant they were more likely to die which caused even greater competition between females, lightening their skin even more. And another, related, argument, proposed that light skin in women evolved due to a complex of childlike traits which includes a higher voice, smoother skin and childlike facial features, which then reduced male competition and aggressiveness. But women did not stay around waiting to be provisioned and they got out and gathered, and hunted sometimes, too.

Harris (2005) proposes that light skin evolved due to parental selection—mothers choosing the lightest daughters to survive, killing off the darker ones. All babies are born pale—or at least lacking the amount of pigment they have later in life. So how would parental—mostly maternal—selection have caused selection for lighter skin in girls as Harris (2005) proposes? It’d be a pretty large guessing game.

The role of sexual selection in regard to human skin color, though, has been tested and falsified. Madrigal and Kelly (2007a) tested the hypothesis that skin reflectance should be positively correlated with distance from the equator. It was proposed by other authors that as our ancestors migrated out of Africa, environmental selection relaxed and sexual selection took over. Their data did not lend credence to the hypothesis and falsified it.

Madrigal and Kelly (2007a: 475) write (emphasis mine):

We tested the hypothesis that human sexual dimorphism in skin color should be positively correlated with distance from the equator, a proposal generated by the sexual selection hypothesis. We found no support for that proposition. Before this paper was written, the sexual selection hypothesis was based on stated male preference data in a number of human groups. Here, we focused on the actual pattern of sexual dimorphism. We report that the distribution of human sexual dimorphism in relation to latitude is not that which is predicted by the sexual selection hypothesis. According to that hypothesis, in areas of low solar radiation, there should be greater sexual dimorphism, because sexual selection for lighter females is not counterbalanced by natural selection for dark skin. Our data analysis does not support this prediction. 

Though Frost (2007) replied, stating that Madrigal and Kelly (2007a) presumed that sexual selection was equal in all areas. Madrigal and Kelly (2007b) responded, stating that they tested one specific hypothesis regarding sexual selection and found it to be false. Frost (2007) proposed two hypotheses in order to test his version, but, again, no one has proposed that women select darker men, which could be a cause of lighter-skinned women (though sexual selection does not—and cannot—explain the observed gradation in skin color between men and women).

Skin color differences between men and women first arose to ensure women enough calcium for lactation and pregnancies. Since skin pigmentation protects against UVR but also must generate vitamin D, it must be light or dark enough to ensure ample vitamin D production in that certain climate, along with protecting against the UVR in that climate. So women needed sufficient vitamin D, which meant they needed sufficient calcium to ensure a strong skeleton for the fetus, for breastfeeding and for the mother’s own overall health.

However, breastfeeding new babes is demanding on the mother’s body (calcium reserves are depleted four times quicker), and the calcium the babe needs to grow its skeleton comes directly from the mother’s bones. Even a mother deficient in vitamin D will still give calcium to the babe at the expense of her own health. But she then needs to increase her reserves of calcium in order to ensure future pregnancies aren’t fatal for her or her offspring.

Though, at the moment to the best of my knowledge, there are no studies on calcium absorption, vitamin D levels and the recovery of the female skeleton after breastfeeding. (Though n3 fatty acids are paramount as well, and so a mother must have sufficient fat stores; see Lassek and Gaulin, 2008.) Thus, light-skinned women are most likely at an advantage when it comes to vitamin D production: The lighter they are, the more vitamin D and calcium they can produce for more pregnancies. Since light skin synthesizes vitamin D more efficiently, the body could then synthesize and use calcium more efficiently. The body cannot use and absorb calcium unless vitamin D is present. Since the fetus takes calcium from the mother’s skeleton, ample amounts of vitamin D must be present. For ample amounts of vitamin D to be present, the skin must be light enough to ensure vitamin D synthesis which would be needed for calcium absorption (Cashman, 2007; Gallagher, Yalamanchili, and Smith, 2012; Aloia et al, 2013).

Nina Jablonski writes in her book (2012, 77):

Women who are chronically deficient in vitamin D because of successive pregnancies and periods of breastfeeding experience a form of bone degeneration called osteomalacia. This has serious consequences for infants born of later pregnancies and for mothers themselves, who are at greater risk of breaking bones. It makes sense that protection of female health during the reproductive years would be a top evolutionary priority, so we are now investigating whether, in fact, slightly lighter skin in women might be a fairly simple way of ensuring that women get enough vitamin D after pregnancy and breastfeeding to enable their bodies to recover quickly. The need for maintaining strong female skeletons through multiple pregnancies may have been the ultimate evolutionary reason for the origin of differences in skin color between men and women.

While Jablonski and Chaplin (2000: 78) write:

We suggest that lighter pigmentation in human females began as a trait directly tied to increased fitness and was subsequently reinforced and enhanced in many human populations by sexual selection.

It is obvious that skin color in women represents a complex balancing act between giving the body the ability to synthesize ample vitamin D and protect from UVR. Skin coloration in humans is very clearly highly adaptive to UVR, and so, with differing average levels of UVR in certain geographic locales, skin color would have evolved to accommodate the human body to whichever climate it found itself in—because human physiology is perhaps the ultimate adaptation.

Sexual selection for skin color played a secondary, not primary role (Jablonski, 2004: 609) in the evolution of skin color differences between men and women. There is a delicate balancing act between skin color, vitamin D synthesis, and UVR protection. Women need to produce enough vitamin D in order to ensure enough calcium and its absorption to the baby and then ensure there are ample amounts to replace what the baby took while in the womb in order for future pregnancies to be successful. Sexual selection cannot explain the observed gradation in skin color between the races and ethnies of the human race. In my opinion, the only explanation for the observed explanation is the fact that skin color evolved due to climatic demands, while independent justification exists for the hypothesis as a whole (Jablonski and Chaplin, 2010).

I don’t see any way that sexual selection can explain the observed gradation in skin color around the world. Skin color is very clearly an adaptation to climate, though of course, cultural customs could widen the skin color differences between the sexes, and make women lighter over time. Nevertheless, what explains the observed skin gradation is adaptation to climate to ensure vitamin D synthesis among a slew of other factors (Jones et al, 2018). Sexual selection, while it may explain small differences between the sexes, cannot explain the differences noted between the native human races.

Should We End Sex Segregation in Sports? Should Athletes Be Assessed by Anatomy And Physiology?

1400 words

An opinion piece by sociologist Roslyn Kerr, senior lecturer in sociology of sport,  from Lincoln University wrote an article on January 18th for The Conversation titled Why it might be time to eradicate sex segregation in sports where she argues against sex segregation in sports. She does publish articles on sports history, leisure studies and sports management and used to be a gymnast so she should have good knowledge—perhaps better than the general public—on anatomy and physiology and how they interact during elite sporting performances. Though is there anything to the argument she provides in her article? Maybe.

The paper is pretty good, though it, of course, uses sociological terms and cites feminist theorists talking about gender binaries in sports and how they’re not ‘fair’. One thing continously brought up in the paper is how there is no way to discern sex regarding sporting competitions (Simpson et al, 1993Dickinson et al, 2002Heggie, 2010), with even chromosome-based testing being thrown out (Elsas et al, 2000). which can be seen with the Olympics “still struggling to define gender“. They state that women are put through humiliating tests to discern their sex.

They use this to buttress their own arguments which are based off of what bodies of disables athletes did: whether or not one competed in a particular sport was not on their disability, per se, but the functionality of their own bodies. As an example, sporting bodies used to group people with, say, a similar spinal injury even though they had different physical abilities. Call me crazy, but I most definitely see the logic that these authors are getting at, and not only because I ruminated on something similar back in the summer in an article on transgendered athletes in sports, writing:

This then brings up some interesting implications. Should we segregate competitions by race since the races have strength and weaknesses due to biology and anatomysuch as somatype? It’s an interesting question to consider, but I think we can all agree on one thing: Women should compete with women, and men should compete with men. Thus, transgenders should compete with transgenders.

Of course I posed the question regarding different races since they have different strengths and weaknesses on average due to evolution in different environments. Kerr and Obel (2017) conclude (pg 13):

Numerous authors have noted that the current two-sex classification system is problematic. They argued that it does not include all bodies, such as intersex bodies, and more importantly, does not work to produce fair competition. Instead, some argued that other traits that we know influence sporting success should be used to classify bodies. In this article, we extended this idea through using the ANT concepts of assemblage and black box. Specifically, we interpreted the current understanding of the body that sex segregation is based on as a black box that assumes the constant superiority of the male body over the female. But we argued that with the body understood as an assemblage, this classification could be reassembled so that this black box is no longer given. Instead we argued that by identifying the multiple traits that make up the assemblage of sporting success, sex classification becomes irrelevant and that it is these traits that we should use to classify athletes rather than sex. Drawing on the example of disability sport we noted that the black box of a medical label was undone and replaced with an emphasis on functionality with different effects for each sport. This change had the effect of undoing rigid medical disability label and enabling athletes’ bodies to be viewed as assemblages consisting of various functional and potentially changing physical abilities. We used this discussion to propose a model of classified that eliminated the need for sex segregation and instead used physical measures such as LBM and VO2 capabilities to determine an athlete’s competitive class.

All of their other arguments aside that I disagree with in their paper (their use of ‘feminist theory’, gendered divisions, short discussions and quotes from other authors on the ‘power structure’ of males), I definitely see the logic here and, in my opinion, it makes sense. Anyway, those shortcomings aside, the actual argument of using anatomy and physiology and seeing which different parts work in concert to produce elite athletic performance in certain sports then having some kind of test, say, the Heath-Carter method for somatype (Wilmore, 1970) to a test of Vo2 max (Cureton et al, 1986) to even lean body mass (LBM).

Healy et al (2014) studied 693 elite athletes in a post-competition setting. They assesed testosterone, among other variables such as aerobic performance. They observed a difference of 10 of between men and women’s LBM and that it exclusively accounts for the “observed diffences in strength and aerobic performance seen between the sexes” while they conclude:

We have shown that despite differences in mean testosterone level between genders, there is complete overlap of the range of concentrations seen. This shows that the recent decision of the IOC and IAAF to limit participation in elite events to women with ‘normal’ serum testosterone is unsustainable.

Yes, this testosterone-influences-sports-performance is still ongoing. I’ve covered it a bit last year, and while I believe there is a link between testosterone and athletic ability and have provided some data and a few anecdotes from David Epstein, I do admit that the actual literature is scant with conclusive evidence that testosterone positively influences sport performance. Either way, if testosterone truly does infer an advantage then, of course, the model (which Kerr and Obel admit is simple at the moment) will need to be slightly revised. Arguments and citations can be found in this article written back in the summer on whether or not transgender MtFs should compete with women. This is also directly related to the MtF who dominated women a few months back.

Either way, the argument that once we better identify anatomic and physiologic causes for differences in certain sporting competition, this could, in theory, be used instead of sex segregation. I think it’s a good idea personally and to see how effective it could be there should be a trial run on it. Kerr and Obel state that it would make competition more ‘fair’. However, Sanchez et al, 2014 cite Murray (2010) who writes “fair sports competition does not require that athletes be equal in every imaginable respect.

At the end of the day, what a lot of this rests on is whether or not testosterone infers athletic advantage at the elite level and there is considerable data for both sides. It’ll be interesting to see how the major sporting bodies handle the question of testosterone in sports and transgenders and hyperandrogenic females.

Personally, I think there may be something to Kerr and Obel’s arguments in their paper (feminist/patriarchy garbage aside) since it’s based on anatomy and physiology which is what we see on the field. However, it can also be argued that sex/gender is manifested in the brain which then infers other advantages/disadvantages in sports. Nonetheless, I think the argument in the paper is sound (the anatomy and physiology arguments only). For instance, we can look at one sport, say, 100 m dash, and we can say “OK, we know that sprinters have meso-ecto somatypes and that combined with the RR ACTN3 genotype, that confers elite athletic performance (Broos et al, 2016).” We could use those two variables along with leg length, foot length etc and then we can test—both in the lab and on the field—which variables infer advantages in certain sports. Another sport we can think of is swimming. Higher levels of body fat with wide clavicles and chest cavity are more conducive to swimming success. We could use those types of variables for swimming and so on.

Of course, this method may not work or it may only work in theory but not work in practice. Using lean body mass, Vo2 max etc etc based on which sport is in question may be better than using the ‘sex binary’, since some women (trust me, I’ve trained hundreds) would be able to compete head-to-head with men and, if for nothing else, it’d be good entertainment.

However, in my opinion, the logic on using anatomy and physiology instead of sex to segregate in sports is intriguing and, if nothing else, would finally give feminists (and non-feminists) the ‘equality’ they ask for.

Preliminary Thoughts on ‘Male-to-Female’ Transgenders in Sports

1500 words

(See my article on transvestic disorder and gender dysphoria for an intro on my view of transgenderism.)

I have been researching male-to-female (MtF) transgenders (TGs) in sports for the past few months. I, like we all do, have my own biases with what should be done with this problem (not letting them compete with women), however jumping to my initial bias there would not be fair so I’ve undertaken the task of reading as many journal articles on the matter as I possibly can. From my research on the matter, there is no direct consensus in the literature that I could come across. In this article, I will show some of the research I’ve found and how it is inconclusive (as well as interject my own thoughts on the matter, mainly speaking about bone density, somatype, and testosterone). (I will cover female-to-male (FtM) transgenders in a future article.)

One recent article making its way around the news is of a MtF who won a weightlifting competition. He (I will be referring to the people I reference by their biological sex) had a total of 590 pounds, besting the second place winner by 42 pounds. Hubbard (the weightlifter who ‘transitioned’) is 39 and has been ‘transitioning’ since his mid-30s. He has also had previous experience competing. The IOC (International Olympic Committee) has no guidelines that a TG athlete must undergo ‘sex-reassignment surgery’, however, they must be on hormone replacement therapy (HRT) for at least 12 months and demonstrate that they have testosterone levels ‘within acceptable limits’. Well, what are ‘acceptable limits’?

The IOC has a short paper on this matter, writing:

The athlete must demonstrate that her total testosterone level in serum has been below 10 nmol/L for at least 12 months prior to her first competition (with the requirement for any longer period to be based on a confidential case-by-case evaluation, considering whether or not 12 months is a sufficient length of time to minimize any advantage in women’s competition).

The athlete’s total testosterone level in serum must remain below 10 nmol/L throughout the period of desired eligibility to compete in the female category.

Compliance with these conditions may be monitored by testing. In the event of non-compliance, the athlete’s eligibility for female competition will be suspended for 12 months.

So the MtF athlete must have a testosterone level of less than 10 nanomoles and declare that they are ‘female’ for at least four years. The IOC states that the individual must be taking HRT for a year or two—whenever they are able to show that their testosterone levels are below that 10 nanomolar mark, they are then allowed to compete. However, other members of the IOC have stated that 10 nanomoles is too high (which is the lower end for males) while arguing that it should be reduced to 3 nanomoles per liter of blood (3 nanomoles is the upper-end for women).

10 nanomoles per liter of blood converts to about 288 ng/dl (nanograms per deciliter). Going with the lower end suggested by other members of the IOC, 3 nanomoles per deciliter of blood converts to 87 ng/dl. The range for women is 15 to 70 ng/dl. Now, the 10 nmol/l is, as you can see, way too high. However, 10 nmol/l converts to slightly higher than the lower end of the new testosterone guidelines for the average male in America and Europe (which I covered yesterday, the new levels being 264-916 ng/dl). As we can see, even 10 nmol/l is way too high and, in my opinion, will give an unfair advantage to these athletes (I know that there is no consensus on whether or not testosterone does give an inherent advantage to MtFs of to hyperandrogenic women; I provide evidence for that below).

In regards to women and hypoandrogenism, Stanton and Wood (2011) state that “excess production of endogenous testosterone due to inborn disorders of sexual development (DSD) may convey a competitive advantage.” The fact of the matter is, endogenous and exogenous testosterone does convey an advantage. So if having higher levels of testosterone conveys a physical advantage in said sport, then 10 nmol/l is way too high. Therefore, the only way (in the eyes of the IOC, not in my opinion) for MtFs to compete with women is to get ‘sex-reassignment surgery’, as the gonads will be removed and testosterone levels will plummet. But how by how much?

In a new review of the literature, Jones et al (2017) state that “there is no direct or consistent research suggesting transgender female individuals (or male individuals) have an athletic advantage at any stage of their transition (e.g. cross-sex hormones, gender-confirming surgery) and, therefore, competitive sport policies that place restrictions on transgender people need to be considered and potentially revised.” They further state that, in most instances, testosterone levels in MtFs “[tended] to be lower than average compared with cisgender women.” So they conclude that there is no evidence that MtFs have no inherent advantage since 1) most of them have lower levels of testosterone than ‘cis-gendered women’, and 2) that there is ‘no evidence’ of testosterone conferring an advantage in athletes (I beg to differ there). The review by Jones et al is a great starting point, however, I disagree with them on numerous things (which I will cover in greater depth in an upcoming, exhaustive research article).

Mueller et al (2011) studied a sample of 84 MtFs who were treated with 10 mg of oestradiol every ten days. They were “treated with subcutaneous injections of 3.8 mg goserelin acetate every 4 weeks to suppress endogenous sex hormone secretion completely.” Follow-ups then commenced at 12 and 24 months. It was found that their BMI, fat mass, and lumbar bone mineral density (BMD) had increased. Conversely, they had a significant decrease in lean mass with a concurrent increase in BMI, which would lead to strength decreases and increased range of motion (ROM), and there was no effect on femoral bone density. This is a larger study than most, most studies having ns of ~20, so the results are robust for this research.

Even if MtFs have a decrease in lean mass and gain in fat mass, they still have inherent biological advantages over women. Testosterone, of course, is not the only reason why men are superior to women in most sports (contrary to the literature). Muscle fiber distribution, cross-sectional area, leverages, etc all play a part in why men are better at sports than women (this is covered at length in Man the Athlete). To the best of my knowledge, cross-sectional area, muscle fiber distribution and leverages don’t change. This is another physical advantage that MtFs would have over ‘cis-gendered women’.

Hyperandrogenic women have also been the center of a lot of controversy (if you follow the Olympics, you may have heard about it occurring during the last Games). Hyperandrogenism affects 5-10 percent of women that are of reproductive age. Signs of hyperandrogenism include hirsutism (hairiness in women), androgenic alopecia (Price, 2003), acne, and virilization (the development of male body hair, bulk, and a deep voice, male-typical characteristics) (Yildiz, 2006). After Caster Semenaya’s dominating win in the middle distance run during last year’s Olympics, the IOC revised their regulations on hyperandrogenic women.

However, Karkazis et al (2016) argued against the IOC and IAAF (International Association of Athletics Federation) stating that “The current scientific evidence, however, does not support the notion that endogenous testosterone levels confer athletic advantage in any straightforward or predictable way.” I strongly disagree with the contention, which I will cover at length in the future. (See Cardinale and Stone, 2006; Wood and Stanton, 2012Vanny and Moon, 2015.) Of course testosterone is not the only biological factor that confers an advantage, but the difference between hyperandrogenic women and normal women is large (hyperandrogenic women have three times the testosterone compared to normal women, so between 45 to 210 ng/dl). So should they be allowed to compete with women with average levels of testosterone?

Men are built differently than women. Even with HRT, MtFs people would still have an advantage over women. The differences are biological, physiological and anatomic in nature and surgery nor HRT will affect certain factors that would confer an advantage due to the sex the person was born as. That part, in my opinion, is the key factor at play. The difference between MtFs and women do not go away due to surgery and HRT (though some do), so since MtFs have certain biological, anatomical and physiological differences, they should not be allowed to compete with women. That is the one main factor in this debate that is being overlooked. And due to these inherent advantages, they should be barred from competing with women.

This then brings up some interesting implications. Should we segregate competitions by race since the races have strengths and weaknesses due to biology and anatomy, such as somatype? It’s an interesting question to consider, but I think we can all agree on one thing: Women should compete with women, and men should compete with men. Thus, transgenders should compete with transgenders. Even the IOC’s regulations are too high, and in my opinion (contra the literature), testosterone does confer an advantage to those who have it in higher levels (i.e. MtFs). Even then, disregarding testosterone, there are a slew of reasons as to why MtFs should not compete with women which will be covered more in the future.

The Evolution of Racial Pelvis Variation

1850 words

It’s well-known that blacks have narrower hips than whites (Rushton, 1997; Handa et al, 2008). These pelvic differences then account for part of the variation in elite sporting events such as sprinting and jumping (Entine, 2000). These pelvic differences are the result of climatic variation and sexual selection.

The evolution of the pelvis is due to bipedalism. We are bipeds because of our S-shaped spine, which helps us to cope with differing loads. The human pelvis had to evolve in two ways—to make birthing babies easier and to become more efficient for bipedal walking. Termed the ‘obstetric dilemma’, it has implications for osteoarthritis in both men and women (Hogervorst, Heinse, and de Vos, 2009). Having a more efficient bipedal gait meant the body could allocate energy to other parts of the body—mainly our growing brains/neuronal count. Over time, the brain grew while the pelvis had to shrink for more efficient bipedalism. The pelvis also got narrower in our evolution, being wider in Australopithicenes, while becoming more narrow when erectus appeared—which is the first instance of a humanlike pelvis in the fossil record—which increased how far we could travel as well as reduce our energy expenditure (Lieberman, et al, 2006). Further discussion can be found in my article Man the Athlete.

So we began evolving a narrower pelvis in comparison to our ancestors because it was more efficient for heat dissipation. Smaller trunks are more efficient for heat dissipation (Lieberman, 2015), whereas wider trunks are more efficient for thermoregulation in colder climes (Weaver and Hublin, 2008; Weaver, 2009; Gruss and Schmidt, 2015). Now, simply applying this logic to Eurasians and Africans (I am grouping East Asians and Europeans together since they were a single breeding population up until about 23,000-6,500ya), we can see one reason why that population has wider pelves than Africans.

When anatomically modern humans (AMH) left Africa between 50-100kya, human skeletal morphology was just like modern-day Africans’ today. When Man migrated into northerly climes, however, a wider pelvis was needed to retain heat in colder climes (Gruss and Schmidt, 2015). So, along with a wider pelvis evolving due to climatic demands on the body, as we migrated north the human brain expanded due to the climate of the area, along with expanding the pelvis to better thermoregulate (which a bigger brain also does in northerly climes). I did argue two months back (and added to Skoyles’ (1999) theory) that brain size increased for expertise capacity and not IQ since Arctic people needed more tools, as well as tools that were more complex, in comparison to peoples who evolved in a hotter climate. So selection then occurred for larger brains and pelvis due to the demand for thermoregulation and bigger brains—which then led to earlier births and more helpless babes, which higher levels of intelligence were then needed to care for them (Piantadosi and Kidd, 2016). The helplessness of infants predicts the intelligence of adults in the primate genera (Piantadosi and Kidd, 2016), so I will assume that this holds within primate species as well (I am not able to locate a citation that this doesn’t hold within the primate genera; if I am in error, please provide a citation). Since African children are born earlier and  more mature than Eurasian children who are born slightly later and more helpless/less developed, this is one reason why Eurasians have higher levels of intelligence than Africans (which is independent of any direct effects of climate I may add!).

So since Eurasians needed a larger brains to make more tools in the Arctic/colder climes, their brains needed to expand in size for increased expertise capacity, which would then have further selected for wider pelves in Eurasian women. Climatic variation caused the wider hips/bigger brains in Eurasians, which then allowed the evolution of larger brains in comparison to those who remained in Africa.

Finally, the obstetric dilemma has been recently called into question; there is evidence that a wider pelvis does not increase locomotor costs in humans (Warrener et al, 2015), a treadmill tracked their gait, as well as the motion of their pelvis. This study is used as evidence that the obstetric dilemma is wrong—they argue that there is no trade-off between narrower hips in men and wider hips in women.  However, as the authors point out, all subjects in the study walked/ran at the same speed. Let’s say that the speed was heightened; do you think the women/men with wider pelves would have had the same locomotor costs as the men/women with narrower pelves? The answer is, obviously, no.

The pelvis of all of the races of Man has evolved the way they are due to environmental/climatic demands. A wider pelvis is better for thermoregulation in colder climates, while a narrower pelvis/body is more efficient for heat loss (Gruss and Schmidt, 2015).

Thus, we can look at the evolution of brain size/pelvic size in a few ways: 1) The amount of tools/complexity of the tools in the area that led to a need for an increase in brain size for more ‘chunks’ (Gobet and Simon, 1998), which then—along with colder climates—selected for larger brains and a wider body/pelvis which made birthing babes with large heads/brains easier along with helping to conserve heat due to the wider body (Gruss and Schmidt, 2015); 2) Since people in higher altitudes needed a high amount of expertise to survive, further selection for bigger brains, wider pelves occurred because of this; 3) Africans have smaller pelves in comparison to Eurasians because they evolved in hotter climes and didn’t have the amount of tools that peoples in more northerly climes did—which also increased brain size; 4) putting this all together, we can say that because Africans live in hotter climates, they need narrow pelves in order to lose body heat; Eurasians, after they migrated into more northerly climes, needed a wider body/pelvis in order to retain heat. When Man migrated north, he needed the ability to become an expert in, say, tool-making and thus needed a bigger brain for more informational chunks (Simon and Gobet, 1998; Skoyles, 1999). Due to this, Eurasians have wider pelves since they needed larger brains for a higher expertise capacity (Skoyles, 1999).

When Man migrated north, he needed the ability to become an expert in, say, tool-making and thus needed a bigger brain for more informational chunks (Simon and Gobet, 1998; Skoyles, 1999). Due to this, Eurasians have wider pelves than Africans; so they can birth larger-brained children. The width of the female pelvis, too, was shaped by sexual selection (Lassek and Gaulin, 2009). Therefore, the evolution of the modern pelvis in human populations comes down to climatic variation, which, in turn, affects how large of a brain the babe is able to have. Climate constrains brain size in either ‘direction’, big or small. We don’t even need to look at the variation within modern Homo sapiens to see the pattern in pelvic size we do today; because the pelvic differences noted among Man definitely were in effect millions of years ago, with hominids in colder climates having wider pelves while hominids in warmer climates had narrower pelves.

Along with everything above, the evolution of the human pelvis has a few implications for the human races today. Some recent studies have shown that there is no obstetric dilemma at all, with birth complications being caused by babies with higher weights than in our ancestral past, due to environmental mismatches causing higher-weight babies (Warrener et al, 2015; Betti, 2017), which was also beneficial for the evolution of our large brains (Cunnane and Crawford, 2003) with the largest amount of cortical neurons in the animal kingdom. However, marked differences in locomotion would be seen in people who had wide pelves compared to narrow pelves; which is what we see in elite running competitions: the elite runners have narrower pelves. So wider pelves don’t impede normal bipedal walking, but it does impede being able to efficiently run, as evidenced in participants of elite sprinting and marathon competitions. Looking at champion athletes and studying their locomotion (along with other traits as I’ve covered here) you can see that those with narrower pelves win more competitions than those with wider pelves (and happen to have different muscle fiber competition, fat distribution/percent, and morphology).

Racial differences in the pelvis explain the reasons behind why a certain race dominates in certain elite competitions; it largely comes down to skeletal morphology. These skeletal differences have evolutionary underpinnings, with the same pelvic differences seen in hominins that evolved in colder/warmer climates in the past. These pelvic differences (along with body fat percentage/distribution, musculoskeletal morphology, muscle fiber type, lean mass percentage, lower Vo2 max, poorer running economy, a larger Q-angle [4.6 degrees greater than men], etc) are why women are less efficient runners. People with wider hips are more likely to have be endomorphic while people with narrower hips are more likely to be ecto and meso. Not surprisingly, people from northerly climes consistently win WSM competitions whereas East and West Africans dominate bodybuilding and sprinting/marathons due to having a narrower pelvis and other advantageous morphological traits that lead to success in the sport. Nevertheless, pelvic differences between the races largely come down to differences in climate, which was also seen in ancient hominins. These pelvic differences further lead to racial differences in elite sporting competition.

References

Betti, L. (2017). Human Variation in Pelvic Shape and the Effects of Climate and Past Population History. The Anatomical Record,300(4), 687-697. doi:10.1002/ar.23542

Cunnane, S. C., & Crawford, M. A. (2003). Survival of the fattest: fat babies were the key to evolution of the large human brain. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology,136(1), 17-26. doi:10.1016/s1095-6433(03)00048-5

Dr. John R. Skoyles (1999) HUMAN EVOLUTION EXPANDED BRAINS TO INCREASE EXPERTISE CAPACITY, NOT IQ. Psycoloquy: 10(002) brain expertise

Entine, J. (2000). Taboo: why Black athletes dominate sports and why we are afraid to talk about it. New York: PublicAffairs.

Gobet, F., & Simon, H. A. (1998). Expert Chess Memory: Revisiting the Chunking Hypothesis. Memory,6(3), 225-255. doi:10.1080/741942359

Gruss, L. T., & Schmitt, D. (2015). The evolution of the human pelvis: changing adaptations to bipedalism, obstetrics and thermoregulation. Philosophical Transactions of the Royal Society B: Biological Sciences,370(1663), 20140063-20140063. doi:10.1098/rstb.2014.0063

Hogervorst, T., Heinse W.B., & de Vos J., (2009) Evolution of the hip and pelvis. Acta Orthopaedica, 80:sup336, 1-39, DOI: 10.1080/17453690610046620

Lieberman, D. E., Raichlen, D. A., Pontzer, H., Bramble, D. M., & Cutright-Smith, E. (2006). The human gluteus maximus and its role in running. Journal of Experimental Biology,209(11), 2143-2155. doi:10.1242/jeb.02255

Lieberman, D. E. (2015). Human Locomotion and Heat Loss: An Evolutionary Perspective. Comprehensive Physiology, 99-117. doi:10.1002/cphy.c140011

Piantadosi, S. T., & Kidd, C. (2016). Extraordinary intelligence and the care of infants. Proceedings of the National Academy of Sciences,113(25), 6874-6879. doi:10.1073/pnas.1506752113

Rushton J P (1997). Race, Evolution, and Behavior. A Life History Perspective (Transaction, New Brunswick, London).

Handa, V. L., Lockhart, M. E., Fielding, J. R., Bradley, C. S., Brubakery, L., Cundiffy, G. W., … Richter, H. E. (2008). Racial Differences in Pelvic Anatomy by Magnetic Resonance Imaging. Obstetrics and Gynecology, 111(4), 914–920.

Warrener, A. G., Lewton, K. L., Pontzer, H., & Lieberman, D. E. (2015). A Wider Pelvis Does Not Increase Locomotor Cost in Humans, with Implications for the Evolution of Childbirth. PLoS ONE, 10(3), e0118903.

Weaver, T. D., & Hublin, J. (2009). Neandertal birth canal shape and the evolution of human childbirth. Proceedings of the National Academy of Sciences,106(20), 8151-8156. doi:10.1073/pnas.0812554106

Weaver, T. D. (2009). The meaning of Neandertal skeletal morphology. Proceedings of the National Academy of Sciences,106(38), 16028-16033. doi:10.1073/pnas.0903864106

There Is Such a Thing As a “Male” and “Female” Brain

2100 words

Towards the end of last year, it was said that “male and female brains don’t differ“. Male and female brains differ from the number of neurons to differences in that affect intelligence, to differences in temperament and differences in the hormones testosterone and estrogen. Other than accounting for differences in physical appearance between the sexes, the differences between the sexes in the two hormones accounts for brain differences as well. This is yet another blank slate argument, years after cognitive neuroscience affirmed that behavior is rooted in the brain and that we are not in fact “blank slates”, these same old and outdated arguments keep being pushed, of course, in part due to the growing number of “transgenders” and an influx of non-western people who are abnormal to our societies. This attempt to have the general public to believe that we have minds of Silly Puddy (to borrow a phrase from Steven Pinker) is an attempt to have us accept all of the things that get pushed on us through the media.

You may have read that having a male brain will earn you more money.

Men do make more money than women, and this isn’t the cause of the imaginary gender pay gap. Even Thomas Sowell, the liberal icon has refuted this myth. Men make more money than women due to, which I will get to below, higher intelligence.

Or maybe that female brains are better at multitasking.

Anecdotal evidence suggests it. Evolutionary evidence suggests it. Studies suggest it. But ever since the Jewish feminist push in the 20th century, this strive for egalitarianism between the sexes became mainstream, which helps to still keep the notion of “blank slatism” alive.

The idea that people have either a “female” or “male” brain is an old one, says Daphna Joel at Tel Aviv University in Israel. “The theory goes that once a fetus develops testicles, they secrete testosterone which masculinises the brain,” she says. “If that were true, there would be two types of brain.”

Anyone else surprised that someone from Tel Aviv University is making these claims? Are we supposed to believe that testosterone doesn’t affect the brain? Are we supposed to believe that higher testosterone, higher estrogen and other biologic differences in brain structure don’t account for behavioral differences between the sexes?

We have data that this is the case, though:

Sex steroid hormones exert a profound influence on the sexual differentiation and function of the neural circuits that mediate dimorphic behaviors. Both estrogen and testosterone are essential for male typical behaviors in many species. Recent studies with genetically modified mice provide important new insights into the logic whereby these two hormones coordinate the display of sexually dimorphic behaviors: estrogen sets up the masculine repertoire of sexual and territorial behaviors, and testosterone controls the extent of these male displays.

Control of masculinization of the brain and behavior (Wu and Shah, 2010)

To believe that testosterone doesn’t cause masculinization of the brain will have to have one deny all of the literature out there. Why people believe that sex differences, as well as racial/ethnic differences, are rooted in experience and not biology is truly mind boggling.

“There are not two types of brain”

And below this, they basically say that the “gender fluid” phenomenon is ‘ok’. Differences between individual boys and girls and individual men and women are extremely evident just by casual observation, so to attempt to say that individual brains cannot be shown to have full-on male or female characteristics is insincere. The fact that, as shown above, testosterone mediates the masculinization of the brain, we can see that these differences in brain structure do exist, and are accounted for by exposure to testosterone invitro, which then cause the differences in the brains of men and women.

Although the team only looked at brain structure, and not function, their findings suggest that we all lie along a continuum of what are traditionally viewed as male and female characteristics. “The study is very helpful in providing biological support for something that we’ve known for some time – that gender isn’t binary,” says Meg John Barker, a psychologist at the Open University in Milton Keynes, UK.

Gender is binary. Female and male characteristics do exist. Males and females differ in certain structures of the brain as seen in a study reviewing over 20 years of the study of sex differences in the brain.

“Across all kinds of spatial skills, we find very, very few that are sensitive to sex,” says Hausmann. “We have also identified spatial problems where women outperform men – the black-and-white idea of a male or female brain is clearly too simple.”

The sex differences on spatial skills tests are rooted in brain structure. Researchers measured a 10 percent difference between men and women in overall amount of parietal lobe surface area. Since how we process information is obviously a result of cognitive processes in the mind, differences between the sexes in brain structure show how men and women can differ in certain cognitive tasks. Of course, some spatial problems can be women can outperform men on some spatial tasks,  no one disputes that. However, what the average battery of tests shows is that men have higher visio-spatial intelligence than men.

Alexandra Kautzky-Willer, head of the Gender Medicine Unit at the Medical University of Vienna in Austria, agrees that things aren’t so simple. “There are differences between men and women when you look in large groups, and these are important for diagnosis and treatment,” she says. “But there are always more differences within genders. We always need to look at culture, environment, education and a person’s role in society,” she says.

Just like there “is more difference within race than between them”, right? Culture is a product of genetics and IQ, we put ourselves into certain environments based on our genes, education is largely heritable, a person’s worth to society is based on IQ and the Big Five personality traits, which are at least 50 percent heritable, all of which are rooted in brain processes.. Those factors don’t prove that there are no differences between the brains of the sexes because all of them can be explained, in part due to genetic factors.

These findings, they claim, say that it’s impossible to say what features a person’s brain will have based on the known sex of the brain. With differences in gray matter, brain size and other regions in the brain, we can definitively say whether or not the brain is male or female. Sure some outliers will occur, but the overall bulk, we would see that the sex would be guessed with a super majority being correct.

Joel envisions a future in which individuals are not so routinely classified based on gender alone. “We separate girls and boys, men and women all the time,” she says. “It’s wrong, not just politically, but scientifically – everyone is different.”

Here we are with the point of this article: to attempt to normalize this trend of degenerate behavior that the media pushes which begins to permeate our society. Chromosomal differences between men and women show the sex differences. X means woman, Y means man. Some may point to some anomalies, but anomalies occur in nature all the time and are not a representative of the population.

This also shows with differences in brain size, that causes a difference in IQ between men and women. The study found that men had brains that were, on average, 8 to 13 percent larger than women’s. Since we know that the IQ/brain size correlation is .35, more often than not, men will have higher IQs than women due to  having slightly larger brains. And the data is consistent with the finding that men and women have slightly differing IQ scores, which shows in the difference in average brain volume between men and women.

In JP Rushton’s refutation to Steven Jay Gould’s revised edition of The Mismeasure of Man, he states that Gould claims that when accounting for body size and age that the difference in brain size drops from 182 grams to 113 grams, then invokes unspecified age and body size parameters and that accounting for these differences then the sex difference in brain size will vanish. Ankney (1992) reexamined the autopsy data of Ho et al (1980) and found that uncorrected for body size, the difference between men and women’s brains was 140 grams; After correcting for body size, the difference between men and women was 100 grams. This shows that around 30 percent of the difference between men and women in brain size is attributed to body size.

In this review, Rushton did state that men and women had the same scores on tests of intelligence and that this provided a paradox due to the differences in brain size between men and women and similar IQ scores. However, Rushton and Jackson (2006) showed that men and women differ by 3.63 IQ points on average, among a multitude of other strong correlates with the difference in IQ scores.

Men have 23 billion neocortical neurons, women with 19 percent less, at 19 billion (Pakkerson and Gunderson, 1997). Seeing as cortical neuron activity moderates perception in the brain, the differences in neocortical neurons affect other processes and mental faculties in the brain as well.

All of these brain differences then manifest themselves in cultural achievement between men and women.

Charles Murray (2003), in his book Human Accomplishment shows differing societies’ human accomplishments and how these differences in human accomplishment have shaped our society today. He gathered data on women Nobel Prize winners from 1901-2000 and found this:

Women Nobel Prize

Women Nobel Prize 2

Murray states on p. 273, 274 and 275 that women have an underrepresentation in the sciences. You would figure, if this so-called “white cis male patriarchy” was out to have women be underrepresented, they wouldn’t have allowed the feminist movement to come full-swing in the early 1900s. Well, the numbers on women Nobel Prize winners from 1901-1950 is: 2 percent sciences total, 4 percent chemistry,2 percent medicine, 2 percent physics and 11 percent literature with a 4 percent representation in total. From 1951-2000, it was 2 percent sciences total, 1 percent chemistry, 4 percent medicine, 1 percent in physics and 8 percent in literature for a total of 3 percent.

Now, this does show women’s high verbal ability at play with regards to the number of literary Nobel Prizes’ they have, but this shows that after the Feminist Movement, that when they got ‘equality’, they failed to produce the same as men. This data corroborates what I noted earlier: that there is a significant amount of cortical neuronal difference between men and women, there is a 3.63 IQ point difference between men and women on average, and finally the data on Nobel Prizes corroborates this information.

CeNK7SIWEAEl7Io

The Defense Ministers of Sweden, Norway, the Netherlands, and Germany embody what is going on at the moment in these countries with the ‘migrant’ crisis. We can see with Russia’s aversion to the scenario currently happening in Europe, that with their Defense Minister, these things that are currently happening in those aforementioned countries won’t happen in Russia.

This is shown in how men and women’s overall leadership capabilities, ability to lead meetings and differing managing strategies. All of these differences, of course, are due to brain differences between men and women.

Women are more emotional than men due to biology, so in times of war with a woman Defense Minister, since men and women differ in inductive and deductive reasoning traits, women won’t be deductive, which is a logical process in which a conclusion is drawn from multiple premises that are assumed to be true, which men excel at. Women, however, excel at inductive reasoning, which is making broad generalizations from specific observations. It seems that in war time, deductive reasoning would be better, seeing as the conclusion is drawn from things that are assumed to be true. Men make better leaders than women because, since, on average, men don’t think with their emotions while women do.

Men and women’s brains differ on the individual level, of course, like all things between groups, sexes, and individuals. The push to deny human nature, and in turn, invoke a blank slate argument even in the face of science is shown in the way that our society is headed. Between differences in brain size, scholastic achievement, IQ, brain weight, Nobel Prizes, neocortical neurons and other gender-specific differences, these innate differences in brain structure manifest themselves in society and the types of jobs women want and acquire. Women cannot lead as well as men and while they ‘lead differently’, the best type of leader to have is a man as men think with logic and facts whereas women think with emotion, on average.