NotPoliticallyCorrect

Home » Posts tagged 'Sports' (Page 2)

Tag Archives: Sports

Advertisements

Is Racial Superiority in Sports a Myth? A Response to Kerr (2010)

2750 words

Racial differences in sporting success are undeniable. The races are somewhat stratified in different sports and we can trace the cause of this to differences in genes and where one’s ancestors were born. We can then say that there is a relationship between them since, they have certain traits which their ancestors also had, which then correlate with geographic ancestry, and we can explain how and why certain populations dominate (or would have the capacity to based on body type and physiology) certain sporting events. Critiques of Taboo: Why Black Athletes Dominate Sports and Why We’re Afraid to Talk About It are few and far between, and the few that I am aware of are alright, but this one I will discuss today is not particularly good, because the author makes a lot of claims he could have easily verified himself.

In 2010, Ian Kerr published The Myth of Racial Superiority in Sports, who states that there is a “dark side” to sports, and specifically sets his sights on Jon Entine’s (2000) book Taboo. In this article, Kerr (2010) makes a lot of, in my opinion, giant claims which provide a lot of evidence and arguments in order to show their validity. I will discuss Kerr’s views on race, biology, the “environment”, “genetic determinism”, and racial dominance in sports (which will have a focus on sprinting/distance running in this article).

Race

Since establishing the reality and validity of the concept of race is central to proving Entine’s (2002) argument on racial differences in sports, then I must prove the reality of race (and rebut what Kerr 2010 writes about race). Kerr (2010: 20) writes:

First, it is important to note that Entine is not working in a vacuum; his assertions about race and sports are part of a larger ongoing argument about folk notions of race. Folk notions of race founded on the idea that deep, mutually exclusive biological categories dividing groups of people have scientific and cultural merit. This type of thinking is rooted in the notion that there are underlying, essential differences among people and that those observable physical differences among people are rooted in biology, in genetics (Ossorio, Duster, 2005: 2).

Dividing groups of people does have scientific, cultural and philosophical merit. The concept of “essences” has long been discarded by philosophers. Though there are differences in both anatomy and physiology in people that differ by geographic location, and this then, at the extreme end, would be enough to cause the differences in elite sporting competition that is seen.

Either way, the argument for the existence of race is simple: 1) populations differ in physical attributes (facial, morphological) which then 2) correlate with geographic ancestry. Therefore, race has a biological basis since the physical differences between these populations are biological in nature. Now that we have established that race exists using only physical features, it should be extremely simple to show how Kerr (2010) is in error with his strong claims regarding race and the so-called “mythology” of racial superiority in sports. Race is biological; the biological argument for race is sound (read here and here, and also see Hardimon, 2017).

Genetic determinism

True genetic determinism—as is commonly thought—does not have any sound, logical basis (Resnick and Vorhaus, 2006). So Kerr’s (2010) claims in this section need to be dissected here. This next quote, though, is pretty much imperative to the soundness and validity of his whole article, and let’s just say that it’s easy to  rebut and invalidates his whole entire argument:

Vinay Harpalani is one of the most outspoken critics of using genetic determinism to validate notions of inferiority or the superiority of certain groups (in this case Black athletes). He argues that in order for any of Entine’s claims to be valid he must prove that: 1) there is a systematic way to define Black and White populations; 2) consistent and plausible genetic differences between the populations can be demonstrated; 3) a link between those genetic differences and athletic performance can be clearly shown (2004).

This is too easy to prove.

1) While I do agree that the terminology of ‘white’ and ‘black’ are extremely broad, as can be seen by looking at Rosenberg et al (2002), population clusters that cluster with what we call ‘white’ and ‘black’ exist (and are a part of continental-level minimalist races). So is there a systematic way to define ‘Black’ and ‘White’ populations? Yes, there is; genetic testing will show where one’s ancestors came from recently, thereby proving point 1.

2) Consistent and plausible genetic differences between populations can be demonstrated. Sure,  there is more variation within races than between them (Lewontin, 1972Rosenberg et al, 2002Witherspoon et al, 2007Hunley, Cabana, and Long, 2016). Even these small between-continent/group differences would have huge effects on the tail end of said distribution.

3) I have compiled numerous data on genetic differences between African ethnies and European ethnies and how these genetic differences then cause differences in elite athletic performance. I have shown that Jamaicans, West Africans, Kenyans and Ethiopians (certain subgroups of the two aforementioned countries) have genetic/somatypic differences that then lead to differences in these sporting competitions. So we can say that race can predict traits important for certain athletic competitions. 

1) The terminology of ‘White’ and ‘Black’ are broad; but we can still classify individuals along these lines; 2) consistent and plausible genetic differences between races and ethnies do exist; 3) a link between these genetic differences between genes/athletic differences between groups can be found. Therefore Entine’s (2002) arguments—and the validity thereof—are sound.

Kerr (2010) then makes a few comments on the West’s “obsession with superficial physical features such as skin color”, but using Hardimon’s minimalist race concept, skin color is a part of the argument to prove the existence and biological reality of race, therefore skin color is not ‘superficial’, since it is also a tell of where one’s ancestors evolved in the recent past. Kerr (2010: 21) then writes:

Marks writes that Entine is saying one of three things: that the very best Black athletes have an inherent genetic advantage over the very best White athletes; that the average Black athlete has a genetic advantage over the average White athlete; that all Blacks have the genetic potential to be better athletes than all Whites. Clearly these three propositions are both unknowable and scientifically untenable. Marks writes that “the first statement is trivial, the secondly statistically intractable, and the third ridiculous for its racial essentialism” (Marks, 2000: 1077).

The first two, in my opinion (the very best black athletes have an inherent genetic advantage over the very  best white athletes and the average black athlete has a genetic advantage over the average white athlete), are true, and I don’t know how you can deny this; especially if you’re talking about AVERAGES. The third statement is ridiculous, because it doesn’t work like that. Kerr (2010), of course, states that race is not a biological reality, but I’ve proven that it is so that statement is a non-factor.

Kerr (2010) then states that “ demonstrating across the board genetic variations between
populations — has in recent years been roundly debunked
“, and also says “ Differences in height, skin color, and hair texture are simply the result of climate-related variation.” This is one of the craziest things I’ve read all year! Differences in height would cause differences in elite sporting competition; differences in skin color can be conceptualized as one’s ancestors’ multi-generational adaptation to the climate they evolved in as can hair texture. If only Kerr (2010) knew that this statement here was the beginning of the end of his shitty argument on Entine’s book. Race is a social construct of a biological reality, and there are genetic differences between races—however small (Risch et al, 2002; Tang et al, 2005) but these small differences can mean big differences at the elite level.

The “environment” and biological variability

Kerr (2010) then shifts his focus over to, not genetic differences, but biological differences. He specifically discusses the Kenyans—Kalenjin—stating that “height or weight, which play an instrumental role in helping define an individual’s athletic prowess, have not been proven to be exclusively rooted in biology or genetics.” While estimates of BMI and height are high (both around .8), I think we can disregard the numbers since they came from highly flawed twin studies, since molecular genetic evidence shows lower heritabilities. Either way, surely height is strongly influenced by ‘genes’. Another important caveat is that Kenya has one of the lowest BMIs in the world, 20.7 for Kenyan men, which also is part of the cause of why certain African ethnies dominate running competitions.

I don’t disagree with Kerr (2010) here too much; many papers show that SES/cultural/social factors are very important to Kenyan runners (Onywera et al, 2006; Wilbur and Pistiladis, 2012Tucker, Onywera, and Santos-Concejero, 2015). You can have all of the ‘physical gifts’ in the world, if it’s not combined with the will to want to do your best, along with cultural and social factors you won’t succeed. But having an advantageous genotype and physique are useless without a strong mind (Lippi, Favaloro, and Guidi, 2008):

An advantageous physical genotype is not enough to build a top-class athlete, a champion capable of breaking Olympic records, if endurance elite performances (maximal rate of oxygen uptake, economy of movement, lactate/ventilatory threshold and, potentially, oxygen uptake kinetics) (Williams & Folland, 2008) are not supported by a strong mental background.

Dissecting this, though, is tougher. Because being born at certain altitudes will cause certain advantageous traits, such as a larger lung capacity (and you will have an advantage in lung capacity when competing at lower altitudes), but certain subpopulations live in these high-altitude areas, so what is it? Genetic? Cultural? Environmental? All three? Nature vs nurture is a false dichotomy; so it is a mixture of the three.

How does one explain, then, the athlete who trains countless hours a day fine-tuning a jump shot, like LeBron James or shaving seconds off sub-four minute miles like Robert Kipkoech Cheruiyot, a four time Boston Marathon winner?

Literally no one denies that elite athletes put in insane amounts of practice; but if everyone has the same amount of practice they won’t have similar abilities.

He also briefly brings up muscle fibers, stating:

These include studies on African fast twitch muscle fibers and development of motor skills. Entine includes these studies to demonstrate irrevocable proof of embedded genetic differences between populations but refuses to accept the fact that any differences may be due to environmental factors or training.

This, again, shows ignorance of the literature. An individual’s muscle fibers are formed during development from the fusion of several myoblasts, with differentiation being completed before birth. Muscle fiber typoing is also set at age 6, no difference in skeletal muscle tissue was found when comparing 6-year-olds and adults, therefore we can state that muscle fiber typing is set by age 6 (Bell et al, 1980). You can, of course, train type II fibers to have similar aerobic capacity to type I fibers, but they’ll never be fully similar. This is something that Kerr (2010) obviously is ignorant to because he’s not well-read on the literature which causes him to make dumb statements like “any differences [in muscle fiber typing] may be due to environmental factors or training“.

Black domination in sports

Finally, Kerr (2010) discusses the fact that whites dominated certain running competitions in the Olympics and that before the 1960s, a majority of distance-running gold medals went to white athletes. He then states that the 2008 Boston Marathon winner was Kenyan; but the next 4 behind him were not. Now, let’s check out the 2017 Marathon winners: Kenya, USA, Japan for the top 3; while 5 Kenyans/Ethiopians are in the top 15 while the same is also true of women; a Kenyan winner, with Kenyans/Ethiopians taking 5 of the top 15 spots. The fact that whites used to do well in running sports is a non-factor; Jesse Owens blew away the competition in the Games in Germany, which showed how blacks would begin to dominate in the US decades later.

Kerr (2010) then ends the article with a ton of wild claims; the wildest one, in my opinion, being that “Kenyans are no more genetically different from any other African or European population on average“, does anyone believe this? Because I have data to the contrary. They have a higher Vo2 max, which of course is trainable but with a ‘genetic’ component (Larsen, 2003), while other authors argue that genetic differences between populations account for differences in success in running competition between populations (Vancini et al, 2014), while male and female Kenyan and Ethiopian runners are the fastest in the half and full marathon (Knechtle et al, 2016). There is a large amount of data out there that speaks about Kenyan/Ethiopian and others’ dominance in running; it seems Kerr (2010) just ignored the data. I agree with Kerr that Kenyanholos show that humans can adapt to their environment; but his conclusion here:

The fact that runners coming from Kenya do so well in running events attests to the fact the combination of intense high altitude training, consumption of a low-fat, high protein diet, and a social and cultural expectation to succeed have created in recent decades an environment which is highly conducive to producing excellent long-distance runners.

is very strong, and while I don’t disagree at all with anything here, he’s disregarding how somatype and genes differ between Kenyans and other populations that compete in these sports that then lead to differences in elite sporting competitions.

Elite sporting performance is influenced by myriad factors, including psychology, ‘environment’, and genetic factors. Something that Kerr (2010) doesn’t understand—because he’s not well-read on this literature—is that many genetic factors that influence sporting performance are known. The ability to become elite depends on one’s capacity for endurance, muscle performance, the ability of the tendons and ligaments to withstand stress and injury, and the attitude to train and push above and beyond what normal people can do (Lippi, Longo, and Maffulli, 2010). We can then extend this to human races; some are better-equipped to excel in running competitions than others.

On its face, Kerr’s (2010) claim that there are no inherent differences between races is wrong. Races differ in somatype, which is due to evolution in different geographic locations for tens of thousands of years. The human body is perfectly adapted to for long distance running (Murray and Costa, 2012), and since our capabilities for endurance running evolved in Africa and they, theoretically, have a musculoskeletal structure similar to the Homo sapiens that left Africa around 70 kya, then it’s only logical to state that African’s, on average, have an inherent ability in running competitions (West and East Africans, while North Africans fare very well in middle distance running, which, again, comes down to living in higher altitudes like Kenyans and Ethiopians).

Wagner and Heyward (2000) reviewed many studies on the physiological differences between blacks and whites. Blacks skew towards mesomorphy; black youths had smaller billiac and bitrochanteric width (the widest measure of the pelvis at the outer edges and the flat process on the femur, respectively), and black infants had longer extremities than white infants (Wagner and Heyward, 2000). We have anatomic evidence that blacks are superior runners (in an American context). Mesomorphic athletes are more likely to be sprinters (Sands et al, 2005; which is also seen in prepubescent children: Marta et al, 2013) Kenyans are ecto-dominant (Vernillo et al, 2013) which helps to explain their success at long-distance running. So just on only looking at the phenotype (a marker for race with geographic ancestry, proving the biological existence of race) we can confidently state, on average just by looking at an individual or a population, how they will fare in certain competitions.

Conclusion

Kerr’s (2010) arguments leave a ton to be desired. Race exists and is a biological reality. I don’t know why this paper got published since it was so full of errors; his arguments were not sound and much of the literature contradicts his claims. What he states at the end about Kenyans is not wrong at all, but to not even bring up genetic/biologic differences as a factor influencing their performance is dishonest.

Of course, a whole slew of factors, be they biological, cultural, psychological, genetic, socioeconomic, anatomic, physiologic etc influence sporting performance, but certain traits are more likely to be found in certain populations, and in the year 2018 we have a good idea of what influences elite sporting performance and what does not. It just so happens that these traits are unevenly distributed between populations, and the cause is evolution in differing climates in differing geographic locations.

Race exists and is a biological reality. Biological anatomic/physiological differences between these races then manifest themselves in elite sporting competition. The races differ, on average, in traits important for success in certain competitions. Therefore, race explains some of the variance in elite sporting competition.

Advertisements

Should We End Sex Segregation in Sports? Should Athletes Be Assessed by Anatomy And Physiology?

1400 words

An opinion piece by sociologist Roslyn Kerr, senior lecturer in sociology of sport,  from Lincoln University wrote an article on January 18th for The Conversation titled Why it might be time to eradicate sex segregation in sports where she argues against sex segregation in sports. She does publish articles on sports history, leisure studies and sports management and used to be a gymnast so she should have good knowledge—perhaps better than the general public—on anatomy and physiology and how they interact during elite sporting performances. Though is there anything to the argument she provides in her article? Maybe.

The paper is pretty good, though it, of course, uses sociological terms and cites feminist theorists talking about gender binaries in sports and how they’re not ‘fair’. One thing continously brought up in the paper is how there is no way to discern sex regarding sporting competitions (Simpson et al, 1993Dickinson et al, 2002Heggie, 2010), with even chromosome-based testing being thrown out (Elsas et al, 2000). which can be seen with the Olympics “still struggling to define gender“. They state that women are put through humiliating tests to discern their sex.

They use this to buttress their own arguments which are based off of what bodies of disables athletes did: whether or not one competed in a particular sport was not on their disability, per se, but the functionality of their own bodies. As an example, sporting bodies used to group people with, say, a similar spinal injury even though they had different physical abilities. Call me crazy, but I most definitely see the logic that these authors are getting at, and not only because I ruminated on something similar back in the summer in an article on transgendered athletes in sports, writing:

This then brings up some interesting implications. Should we segregate competitions by race since the races have strength and weaknesses due to biology and anatomysuch as somatype? It’s an interesting question to consider, but I think we can all agree on one thing: Women should compete with women, and men should compete with men. Thus, transgenders should compete with transgenders.

Of course I posed the question regarding different races since they have different strengths and weaknesses on average due to evolution in different environments. Kerr and Obel (2017) conclude (pg 13):

Numerous authors have noted that the current two-sex classification system is problematic. They argued that it does not include all bodies, such as intersex bodies, and more importantly, does not work to produce fair competition. Instead, some argued that other traits that we know influence sporting success should be used to classify bodies. In this article, we extended this idea through using the ANT concepts of assemblage and black box. Specifically, we interpreted the current understanding of the body that sex segregation is based on as a black box that assumes the constant superiority of the male body over the female. But we argued that with the body understood as an assemblage, this classification could be reassembled so that this black box is no longer given. Instead we argued that by identifying the multiple traits that make up the assemblage of sporting success, sex classification becomes irrelevant and that it is these traits that we should use to classify athletes rather than sex. Drawing on the example of disability sport we noted that the black box of a medical label was undone and replaced with an emphasis on functionality with different effects for each sport. This change had the effect of undoing rigid medical disability label and enabling athletes’ bodies to be viewed as assemblages consisting of various functional and potentially changing physical abilities. We used this discussion to propose a model of classified that eliminated the need for sex segregation and instead used physical measures such as LBM and VO2 capabilities to determine an athlete’s competitive class.

All of their other arguments aside that I disagree with in their paper (their use of ‘feminist theory’, gendered divisions, short discussions and quotes from other authors on the ‘power structure’ of males), I definitely see the logic here and, in my opinion, it makes sense. Anyway, those shortcomings aside, the actual argument of using anatomy and physiology and seeing which different parts work in concert to produce elite athletic performance in certain sports then having some kind of test, say, the Heath-Carter method for somatype (Wilmore, 1970) to a test of Vo2 max (Cureton et al, 1986) to even lean body mass (LBM).

Healy et al (2014) studied 693 elite athletes in a post-competition setting. They assesed testosterone, among other variables such as aerobic performance. They observed a difference of 10 of between men and women’s LBM and that it exclusively accounts for the “observed diffences in strength and aerobic performance seen between the sexes” while they conclude:

We have shown that despite differences in mean testosterone level between genders, there is complete overlap of the range of concentrations seen. This shows that the recent decision of the IOC and IAAF to limit participation in elite events to women with ‘normal’ serum testosterone is unsustainable.

Yes, this testosterone-influences-sports-performance is still ongoing. I’ve covered it a bit last year, and while I believe there is a link between testosterone and athletic ability and have provided some data and a few anecdotes from David Epstein, I do admit that the actual literature is scant with conclusive evidence that testosterone positively influences sport performance. Either way, if testosterone truly does infer an advantage then, of course, the model (which Kerr and Obel admit is simple at the moment) will need to be slightly revised. Arguments and citations can be found in this article written back in the summer on whether or not transgender MtFs should compete with women. This is also directly related to the MtF who dominated women a few months back.

Either way, the argument that once we better identify anatomic and physiologic causes for differences in certain sporting competition, this could, in theory, be used instead of sex segregation. I think it’s a good idea personally and to see how effective it could be there should be a trial run on it. Kerr and Obel state that it would make competition more ‘fair’. However, Sanchez et al, 2014 cite Murray (2010) who writes “fair sports competition does not require that athletes be equal in every imaginable respect.

At the end of the day, what a lot of this rests on is whether or not testosterone infers athletic advantage at the elite level and there is considerable data for both sides. It’ll be interesting to see how the major sporting bodies handle the question of testosterone in sports and transgenders and hyperandrogenic females.

Personally, I think there may be something to Kerr and Obel’s arguments in their paper (feminist/patriarchy garbage aside) since it’s based on anatomy and physiology which is what we see on the field. However, it can also be argued that sex/gender is manifested in the brain which then infers other advantages/disadvantages in sports. Nonetheless, I think the argument in the paper is sound (the anatomy and physiology arguments only). For instance, we can look at one sport, say, 100 m dash, and we can say “OK, we know that sprinters have meso-ecto somatypes and that combined with the RR ACTN3 genotype, that confers elite athletic performance (Broos et al, 2016).” We could use those two variables along with leg length, foot length etc and then we can test—both in the lab and on the field—which variables infer advantages in certain sports. Another sport we can think of is swimming. Higher levels of body fat with wide clavicles and chest cavity are more conducive to swimming success. We could use those types of variables for swimming and so on.

Of course, this method may not work or it may only work in theory but not work in practice. Using lean body mass, Vo2 max etc etc based on which sport is in question may be better than using the ‘sex binary’, since some women (trust me, I’ve trained hundreds) would be able to compete head-to-head with men and, if for nothing else, it’d be good entertainment.

However, in my opinion, the logic on using anatomy and physiology instead of sex to segregate in sports is intriguing and, if nothing else, would finally give feminists (and non-feminists) the ‘equality’ they ask for.

Explaining African Running Success Through a Systems View

2100 words

Last year I bought The Genius in All of Us: New Insights Into Genetics, Talent, and IQ (Shenk, 2010) and while the book is interesting and I agree with a few things he says, he gets it horribly wrong on athleticism and ethnicity. Some of it I may be able to forgive since the book was written in 2010, but he does make some glaring errors. Chapter 6—pages 100-111—is titled Can White Men Jump? Ethnicity, Genes, Culture, and Success. 

In the beginning of the chapter, Shenk writes that after the 2008 Beijing Summer Olympics, many articles were written about the Jamaican women who took the top three spots in the 100 and 200m races, with the emergence of Usain Bolt and his record-setting performance. Shenk (2010: 101) writes:

The powerful protein [alpha-actinin-3] is produced by a special gene variant called ACTN3, at least one copy of which is found in 98 percent of Jamaicans—far higher than in many other ethnic populations.

An impressive fact, but no one stopped to do the math. Eighty percent of Americans also had at least one copy of ACTN3—that amounts to 240 million people. Eighty-two percent of Europeans have it as well—that tacks on another 597 million potential sprinters. “There’s simply no clear relationship between the frequency of this variant in a population and its capacity to produce sprinting superstars,” concluded geneticist Daniel MacArthur.

I have written about MacArthur’s thoughts on the ACTN3 variant—that he helped discover, no less—in an article on Jamaicans, Kenyans, and Ethiopians and the explanatory factors in regard to their success in running competitions. Though, the article from MacArthur was written in 2008 and Shenk’s book was written in 2010, considerable advances have been made in this field. It was found that “combined effects of morphological and contractile properties of individual fast muscle fibers attribute to the enhanced performance observed in RR genotypes during explosive contractions” (Broos et al, 2016). Of course when talking about sprinting and morphology, you must think of the somatype. The somatype that is conducive to running success is a tall, lanky body with long limbs, as longer limbs can cover more distance. So European runners don’t have the right somatype, nor are the XX genotype for the ACTN3 variant high in Jamaicans (this genotype is present in ~2 percent of the Jamaican population; Scott et al, 2010). This—among other reasons I have laid out in the past—are why Jamaicans excel in sprinting competitions compared to other ethnic groups.

Shenk (2014: 10) further writes that sports success seem to come in ‘geographic clusters’, and the field of sports geography has been developed to understand it. “What they’ve discovered is that there’s never a single cause for a single cluster,” Shenk writes. “Rather, the success comes from many contributions of climate, media, demographics, politics, training, spirituality, education, economics and folklore. In short, athletic clusters are not genetic, but systemic.” Shenk then discusses the fact that these explanations are not good enough and that some ‘sports geographers’ have transformed themselves into ‘sports geneticists’ and then cites Jon Entine’s 2002 book Taboo: Why Black Athletes Dominate Sports and Why We’re Afraid to Talk About It where Shenk quotes Entine who quotes geneticist and physiologist Claude Bouchard who says that “these biological characteristics are not unique to West or East African blacks. These populations are seen in all populations, including whites” (Shenk, 2010: 102). Of course they’re not unique to one population and I don’t think that anyone has ever claimed that. Though the frequencies of these biological, morphological and physiological characteristics are not distributed evenly amongst populations and this explains how and why certain populations excel in certain sports when compared to others.

Shenk (2010: 102) also quotes Entine (2002), writing: “Entine also acknowledges that we haven’t actually found the actual genes he’s alluding to. “These genes will likely be identified early in the [twenty-first century],” he predicts.” We have ‘found some genes’ that aid in athletic performance, the ACTN3 genotype combined with type II fibers and the right morphology, as mentioned above for one. (Though a systems view—one of holism—makes much more sense here than a reducionist view. You must look at the whole system, not reduce things down, but that’s for another day.) That, in my opnion, is a large driver for ethnic differences in sports like this, because you need certain traits if you want to excel in these types of competitions.

He then discusses the success of the Kenyans in distance running—stating that 90 percent of Kenyan runners come from a small subset of Kenyans called the Kalenjin. He cites a few stories of some Kalenjin who talk about their experiences with no running water in their homes and that they had to “run to the river, to take your shower, run home, change, [run] to school . . . Everything is running” (Keino, a Kalenjin boy, quoted from Shenk, 2010: 104). Of course this is attributed to a multitude of factors, all of which have to work in concert to get the desired effect. For instance, sports psychologists have found that strong cultural achievement and the ability to work hard, compete, outdo others and seek new challenges drives their running dominance.

Shenk (2010: 106-107) then writes:

1.DESPITE APPEARANCES TO THE CONTRARY, RACIAL AND ETHNIC GROUPS ARE NOT GENETICALLY DISCRETE.

Skin color is a great deceiver; actual genetic differences between ethnic and geographic groups are very, very limited. All human beings are descended from the same African ancestors … [blah blah blah] … By no stretch of the imagination, then, does any ethnicity or region have an exclusive lock on a particular body type or secret high-performance gene. Body shapes, muscle fiber types, etc., are actually quite varied and scattered, and true athletic potential is widespread and plentiful.

Of course, I don’t think I have ever read anyone who denies this. However, as I’ve noted too many times to count, certain body types and muscle fiber distributions are more likely to be found in certain populations due to where their ancestors evolved recently, and so the fact that ‘actual genetic differences between ethnic and geographic groups are very, very, limited’ does not mean much when talking about dominance by a few populations in elite sporting competition. It just so happens to be the case that the somatypes and muscle fiber distributions that are conducive to running success are more likely to be found in populations of West and East African descent. This is an undeniable fact. (Also note how these ‘appearances to the contrary’ show how race is real.)

2.GENES DON’T DIRECTLY CAUSE TRAITS; THEY ONLY INFLUENCE THE SYSTEM.

Consistent with other lessons of GxE [Genes x Environment], the surprising finding of the $3 billion Human Genome Project is that only in rare instances do specific gene variants directly cause specific traits or diseases. …

As the search for athletic genes continues, therefore, the overwhelming evidence suggests that researchers will instead locate genes prone to certain types of interactions: gene variant A in combination with gene variant B, provoked into expression by X amount of training + Y altitude + Z will to win + a hundred other life variables (coaching, injuries, etc.), will produce some specific result R. What this means, of course, What this means, of course, is that we need to dispense rhetorically with thick firewall between biology (nature) and training (nurture). The reality of GxE assures that each persons genes interacts with his climate, altitude, culture, meals, language, customs and spirituality—everything—to produce unique lifestyle trajectories. Genes play a critical role, but as dynamic instruments, not a fixed blueprint. A seven- or fourteen- or twenty-eight-year-old is not that way merely because of genetic instruction. (Shenk, 2010: 107)

Nothing really wrong here. He is correct, which is why you need to look at the whole biological system, which also includes the culture, climate, environment and so on that the biological, developmental system finds itself in. However, Shenk then gets it wrong again writing that Jamaicans are a ‘quite heterogenous genetic group’ due to being a transport between North and South America. He states—correctly—that Jamaicans ancestry is about equal to that of African-Americans, but the individual variation in ancestry varies by “46.8 to 97.0 percent” (Shenk, 2010: 108).

Shenk gets a lot wrong here. For example. African-American and Jamaicans—despite both being descended from slave populations—have differing maternal ancestry which somehow influences athletic success. Deason (2017) found that 1) modern Jamaicans are descended from slaves and, who had considerable selective pressure on the population; 2) maternal ancestry could either influence sports success or be a false positive; 3) maternal lineages were different in Jamaicans and African-Americans, implying that the same maternal lineage is not distributed evenly between both sprinting populations; 4) some evidence exists that the genetic histories of Jamaicans and African-Americans are different based on their maternal haplotypes; 5) low SES and low access to healthcare—classic indicators of high African ancestry—were not directly linked to elite athletic success; 6) comparisons of the genomes of African-Americans and Jamaicans did not significantly differ since the estimated number of generations since admixture occurred, which implies that controls were not more likely to have more recent European ancestry than athletes; and 7) the regions of the genome that influence sprinting performance may be different in both populations. This is the best evidence to date against Shenk’s simplistic notions of the genetics between Jamaicans and African-Americans.

Differences in fast twitch fibers between Europeans and West Africans explain a large amount of the variance between Europeans and West African descendants in regard to sprinting success, while those with more symmetrical knees and ankles tend to run faster in the 100m dash (Trivers et al, 2014). This would also imply that Jamaicans have more symmetry in their knees and ankles than Europeans, though I am not aware of data that makes this comparison.

Shenk finally discusses the psycho-social-cultural aspects behind the phenomenon, stating that Roger Bannister, the first person to break the four minute mile, stated that while “biology sets limits to performance, it is the mind that plainly determines how close individuals come to those absolute limits” (Shenk, 2010: 110-111). Numerous psychological factors do, indeed, need to combine in order for the individual in question to excel in sports—along with the requisite anatomical/physiological/morphological traits too. Sasaki and Sekiya note that “changes in physiological arousal and movement velocuty induced by mild psychological pressure played a significant role in the sprint performance.” (See also Bali, 2015.)

Lippi, Favaloro, and Guidi, (2008) note how “An advantageous physical genotype is not enough to build a top-class athlete, a champion capable of breaking Olympic records, if endurance elite performances (maximal rate of oxygen uptake, economy of movement, lactate/ventilatory threshold and, potentially, oxygen uptake kinetics) (Williams & Folland, 2008) are not supported by a strong mental background.” I have argued this for months, even if the beneficial somatype is there in the athlete in question, if he/she does not have the will to win they will not succeed in their goals. Psychosocial factors, of course, matter just as much as the physical but all of these factors work in concert to get the outcomes that occur in these sports.

Attempting to pinpoint one or a few traits—while it may help us to understand better physilogic and anatomic processes—tells us nothing about the entire system. This is why, for instance, the whole athletes system needs to be looked at—call it the ‘systems view of the athlete’, where all of these aforementioned variables work in concert to express elite athletic performance, with no one variable being higher than another as an explanatory factor in sports success. Though Shenk gets a few things right (like his point on genes not causing traits on their own, they just influence the system, and I’d take it a step further to note that genes are passive in their relationship to the physiological system as a whole and are only activated by the system as needed, not being ’causes’ on their own; Noble, 2008), he’s largely misguided on how certain aspects of Jamaican ancestry and morphology help propel them to running success in comparison to other ethnies.

When explaining elite athletic performance in certain areas of sports, you must take a view of the whole system, with each known variable influencing the next in the chain, if you want to explain why certain ethnies or racial groups do better in a given sport than other groups. A systems view is the only view to take when comparing populations in different athletic competitions. So the influence of culture, psychology, social effects, morphology, ancestry, anatomy, physiology, muscle fibers, etc all work in concert to produce elite athletic phenotypes that then excel in these sports, and reducing this down to certain variables—while it may help us understand some of the inner mechanics—it does nothing to help advance the hows and whys of elite success in sports competition when comparing different populations.

Malaria, the Sickle Cell Trait, and Fast Twitch Muscle Fibers

2550 words

West Africans and their descendants have longer limbs and a shorter trunk than Europeans, on average—as I have extensively noted. Due to where they evolved, of course, they have a different morphology and physiology. Bergmann’s rule states that peoples with recent ancestry in the tropics will have slimmer pelvic bones and be narrower overall whereas Allen’s rule states that peoples with recent ancestry in the tropics will have long limbs, these traits being good for heat dissipation (Lieberman, 2015) and is one reason why West Africans and their descendants excel in these most sports in America.

The fact that a lot of African ethnic groups have different anatomic proportions and physiologic adaptations in comparison to people who have evolved in non-tropical climates is not contested. Morrison and Cooper’s (2006) hypothesis on sick cell anemia driving elite athletic performance in West Africans and their descendants is one of the most interesting explanations I’ve heard on the biochemical differences between the races. Sickle cell anemia is caused by a gene mutation. On amino acid 6, a single nucleotide substitution from A to T (As pair it Ts, Gs pair with Cs). This substitution changes a glutamic acid codon to valine codon which then causes sickling of the blood. Sickle cell anemia, of course, is not a ‘black disease’ as is popularly believed, but it, in fact, has to do with geography and the prevalence of malaria-carrying mosquitoes in that location. “This mutation“, Morrison and Cooper (2006) write “appears to have triggered a series of physiological adjustments, which have had favourable athletic consequences.

Now, I’m aware that those who are already skeptical of this hypothesis may say ‘so does this mean that Italians, Greeks, MENA peoples etc have more type II fibers and would excel in these competitions?’, no it does not mean that because they don’t have the requisite morphology that West Africans have.

In the 1970s, a study was carried out on the physiological and anatomical proportions of Olympic athletes who competed in the 1968 Olympic games. Anatomic and physiologic measures were taken for each athlete. They used four racial classifications: Negroid, Caucasoid, Mongoloid, and mestizo (Indian/Spanish mix). The classifications were based on “were based on identification and somatotype photographs, as well as physical characteristics including skin color; general body shape; proportions of segments of the limbs; facial structure; form of eyes, lips, and nose; and colour and texture of hair” (Morrison and Cooper, 2006). This study, of course, also confirmed the anatomic differences between blacks and other races and how it leads to superior sports performance. Though, something peculiar was noted in the black athletes. Morrison and Cooper (2006) write: “Although the study failed to link athletic capability to a single gene system, the authors expressed “surprise” that “a sizeable number of Negroid Olympic athletes manifested the sickle-cell trait.”

One interesting study looked at the sickle cell trait (SCT) in French West Indian elite sprint athletes (Marlin et al, 2005). Using the French National Team for the year 2000, Marlin et al (2005) identified 3 sprinters (2 males and 1 female) who tested positive for the SCT. They also noticed a significantly higher presence of titles for people who tested positive for the SCT (38.6 percent for males and 50 percent for females. Marlin et al (2005: 624) conclude “that male SCT carriers are able to perform sprints and brief exercises at the highest levels” and “that brief and intensive exercise performance involving mainly alactic anaerobic metabolism may be enhanced by HbS in elite male sprinters.

Blacks had narrower hips, longer arms and legs and a shorter trunk in comparison to other races. Of course, somatype is the variable that matters here but certain races are more likely to have certain anatomic characters that lead to superior spots performance on comparison to other races. The authors also attempted to link traits with single gene networks but were unsuccessful. However, they did notice that a large number of black athletes tested positive for the sickle cell trait. There is a conundrum here, however. People with the sickle cell gene might have a greater oxygen demand which causes more in vivo cell sickling. It was hypothesized that these individuals would be at a disadvantage since the 1968 Olympic games were held in Mexico city which is a high altitude area. They theorized that their blood would sickle more at the high altitude in comparison to low altitude but this was not seen.

Then another study was carried out which showed that not only do individuals with the sickle cell trait have lower hemoglobin levels, but all blacks do (Garn, Smith, and Clark, 1975). This is how and why they can perform at high altitudes despite having the sickle cell trait. Then, to test if this was mostly ‘environmental’ or ‘genetic’ they undertook a large study where they followed individuals throughout their whole lives and the difference persisted even later in life. Of course, according to other authors, some sort of compensatory mechanism should exist to counteract black’s lower hemoglobin levels, since this deficiency even exists in athletes (Morrison and Cooper, 2006).

As I’ve written about in the past, it was established that type I and type II fibers use different metabolic pathways and that type II fibers lead to improved athletic performance (along with the certain genotype for the ACTN3 gene). Morrison and Cooper (2006) also state that, of course, not all West Africans and descendants have this trait, and that these people came from a small area of West Africa.

A study looking at pulmonary differences between blacks and whites was conducted which found that blacks compensated for smaller lungs by breathing harder than whites while engaged in physical activity.   In a study of 80 Asians and Europeans, Korotzer, Ong, and Hansen (2000) also showed that Asians had lower pulmonary functioning than Europeans. Even differences in chest size has been purported to explain differences in lung functioning, though this relationship did not hold (Whittaker, Sutton, and Beardsmore, 2005). Though, in his short review on race and the history of lung functioning, Braun (2015) writes that “At the very least, the idea that people labelled ‘white’ naturally have higher lung capacity than other races throughout the world should be approached with some skepticism.” because “Most commercially available spirometers internationally ‘correct’ or ‘adjust’ for race in one of two ways: by using a scaling factor for all people not considered to be ‘white’; or by applying population-specific norms. To enable the spirometer, the operator must select the race of an individual, as well as indicate their age, sex/gender and height. How race (or population) is determined varies, with most operators either asking patients to self-identify or ‘eyeballing it’. Interviews with users of the spirometer indicate that many operators are unaware that they are automatically activating race correction when they select a patient’s race (3). Because ‘correction’ is programmed into the spirometer by the manufacturer, it can be difficult to disable.

Braun, Wolfgang, and Dickerson (2013) and Braun (2015) critiques pulmonary studies because in a large majority of cases, possible explanatory variables for lower lung functioning in black Americans could be related to SES. Harik-Khan, Muller, and Wise (2004) used participants from the Third National Health and Nutrition Examination Survey. They chose black and white children between the ages of 8 and 17 who did not smoke (n=1462, 623 whites and 839 blacks). Blacks were taller but had lower SES, had lower levels of vitamins A and C, along with lower levels of alpha carotene. They also had lower lung functioning.  When they adjusted for confounds, sitting explained 42 to 53 percent of the racial difference, SES factors and antioxidant vitamin levels accounted for 7 to 10 percent of the difference. So they could only account for 50 to 63 percent of the difference. In 752 children aged 8 to 10 years of age, low birth weight accounted for 3 to 5 percent of the differences whereas maternal smoking had no effect (Harik-Khan, Muller, and Wise, 2004). So the remaining variation, obviously, will be accounted for by other SES variables, biology, or environmental factors.

Whitrow and Harding (2004) show that, at least for Caribbean blacks living in the UK, upper body differences explained most of the variation in lung functioning than did sitting height, with social correlates having a small but significant impact.

So because blacks have more type II fibers on average, they will convert glucose into energy more rapidly than whites. The energy for these muscle contractions comes from adenosine triphosphate (ATP). Blacks and whites both convert glucose into ATP for cellular functioning but in different ratios. These differences in muscular contractions driven by the metabolic pathway differences of the fibers are one large reason why blacks dominate sports.

Fibers are broken down into two types: fast and slow twitch. Slow twitch fibers use aerobic metabolism which is how they generate ATP and greater oxidative capacity due to higher levels for myoglobin. Oxygen bound to hemoglobin is carried to the red blood cells through capillaries that then influence muscular performance. Myoglobin is also essential for the transport of oxygen to the mitochondria where it is then consumed. Conversely, fast twitch fibers use anaerobic metabolism, have less oxidative capacity, less myoglobin and due to this, they are more dependent on anaerobic metabolism. Blacks also have “significantly higher levels of activity in their phosphagenic, glycolytic, and lactate dehydrogenase marbling pathways than their Caucasian counterparts” (Morrison and Cooper, 2006). This is where the production of ATP is regenerated,and so they have a huge advantage here. So higher faster production of ATP lead to more efficient ATP production, too. However when the ATP is depleted then it’s replaced by a reaction that depletes creatine phosphate. Skeletal muscle then converts “chemical energy into mechanical work” which only 30 to 50 percent is wasted as heat, so even small physiological differences can lead to large differences in performance (Morris and Cooper, 2006).

Though that’s not the only biochemical difference (faster ATP regeneration and production) between the blacks and whites that would explain sports performance. Morrison and Cooper (2006) write: “There is also considerably greater activity in the lactate dehydrogenase pathway of people of West African descent. A primary function of this pathway is to reduce muscle fatigue by converting lactic acid back to glucose and refeeding the muscles. This cyclic set of reactions, from muscles to liver and back to muscles, is known as the Cori cycle.

Lactic acid production is that feeling in your muscles when during extended athletic activity whereas the postponement of muscle fatigue rests on the rate at which lactic acid is covered into glucose. The rate of this removal is further increased by the lactate dehydrogenase pathway describe above by Morrison and Cooper.

Clearly, the production of lactic acid causes problems during physical activity. The production of lactic acid into glucose to refers the muscles through the lactate dehydrogenase pathway is critical, for if glycogen reserves are depleted during extended physical activity then blood glucose would become the primary source of energy for the muscles, which could lead to lowered blood glucose levels and the nervous system may become compromised. During prolonged activity, however, if glucose isn’t available for energy then the body uses fat reserves which is less efficient than carbohydrates for energy and combustion.

Morrison and Cooper conclude: “Not the least of coincidence seems to be the influence of the compensatory sickle cell gene on oxygen transport and availability to the tissues. The reduced availability  pulled with reduced oxygen myoglobin in the preponderant fast-twitch muscle fibres which are adapted for rapid anaerobic energy (ATP) regeneration, all give a new outcome of muscle anatomical and biochemical advantages which proffer a superior athleticism.

Though, at the moment, as David Epstein states in his 2014 book The Sports Gene: Inside the Science of Extraordinary Athletic Performance, in a few studies done on mice genetically altered to have low hemoglobin levels, a there was a “shift of type IIa fast-twitch muscle fibers to type IIb “super fast twitch” muscle fibers in their lower legs” (Epstein, 2014: 179). This is also a developmental effect of mice in their lifetime, not a direct effect of evolution (Epstein, 2014: 179). No compensatory mechanism yet exists for humans, which I will attempt to untangle in future articles on the matter.

At the end of the chapter on this subject (Chapter 11, Malaria and Muscle Fibers, page 179), Epstein states that he asked physiologists their thoughts on the hypothesis. A few people approved of it, whereas one stated that he had evidence for physiological differences between blacks and whites that have not been studied before but he won’t release his results:

Several scientists I spoke to about the theory insisted they woud have no interest in investigating it because of the inevitably thorny issue of race involved. On of them told me that he actually has data on ethnic differences with respect to a particular physiological trait, but that he would never publish the data because of potential controversy. Another told me he would worry about following Cooper and Morrison’s line of inquiry because any suggestion of a physical advantage among a group of people could be equated to a corresponding lack of intellect, as if athleticism and intelligence were on some kind of biological teeter-totter. With that stigman in mind, perhaps the most important writing Cooper did in Black Superman [Cooper’s book] was his methodical eviseceration of any supposed inverse link between physical and mental prowess. “The concept that physical superiority could somehow be a symptomn of intellectual inferiority only developed when physical superiority became associated with African Americans,” Cooper wrote. “That association did not begin until about 1936.” The idea that athleticism was suddenly inversely proportional to intellect was never a cause of bigotry, but rather a result of it. And Cooper implied a more serious scientific inquiry into difficult issues, not less, is the appropriate path. (Epstein, 2014: 179) [Entine (2002) also spends a considerable amount of time debunking the myth of intelligence and athletic ability being negatively correlated in his 2002 book Taboo: Why Black Athletes Dominate Sports and Why We’re Afraid to Talk About It, which was kind of popularized by Rushton (1997) with his now debunked r/K selection theory.]

Things like this piss me off. These differences are actually measurable and lead to trait differences between the races, and know the mechanisms, pathways and whatnot and people are still. Scared to share their findings. One day, I hope, science will find a way to disregard people’s feelings in regard to people’s feelings on notable, testable and replicable differences between the races, most importantly between blacks and whites. I’ve noted how type II fibers lead to metabolic changes and small tears which then cause big problems. This is due to how fast the type II fibers fire in comparison to the slow twitch fibers.

This hypothesis is extremely interesting and now that I’ve laid out Morrison and Cooper’s (2006) hypothesis, I’m going to take a deep dive into this literature to see what I can prove about this hypothesis. Of course, the somatype along with the fiber distribution matters, as does having the XX genotype and not RR, which lends to superior athletic performance when coupled with type II muscle fibers (Broos et al, 2016). The pieces of this puzzle are, in my opinion, slowly being put together for someone to come along and integrate them into a coherent theory for the sickle cell trait and superior athletic performance through type II muscle fibers. It’s very interesting to note that elite sprinters were more likely to carry the SCT and that champion sprinters were more likely to have it too.

Evidence for Testosterone Influencing Sports Performance

1200 words

Back in July I wrote about how there is controversy on whether or not MtF transgenders should compete with ‘bio women’ and whether or not their anthropometry or hormones gave them an advantage over biological women (I am aware that T levels decrease once they go on HRT, just a lot of them still have T ranges in near the low end of the new numbers for men). Well I am reading The Sports Gene by Jerry Epstein and he brings up two (anecdotal) examples of MtF transgenders who take HRT and see a decrease in performance due to decreased T:

No scientist can claim to know the precise impact of testosterone on any individual athlete. But a 2012 study that spent three months following female athletes from a range of sports—including track and field and swimming—showed that elite-level competitors had testosterone levels that consistently remained more than twice as high as those of the nonelites. And there are powerful anecdotes as well.

Joanna Harper, fifty-five, is a medical physicist who was born a male and later transitioned to living as a woman. Harper also happens to be a nationally accomplished age-group runner, and when she started hormone therapy in August 2004 to suppress her body testosterone and physically transition to female [Note from RR: I, of course, do not agree with the use of ‘her’ and that ‘she’ ‘physically transition[ed] to female’] like any good scientist, she took data. Harper figured she would slow down gradually, but was surprised to find herself getting slower and weaker by the end of the first month. “I felt the same when I ran,” she says. “I just couldn’t go  as fast.” In 2012, Harper won the U.S. national cross-country title for the fifty-five-to-fifty-nine age group, but age and gender-graded performance standards indicate that Harper is precisely as competitive now as a female as she was as a male. That is, as a female, Harper is just as good relative to women as she was relative to men before her transition, but she’s far slower than her former, higher-testosterone self.

In 2003, as a man, Harper ran Portland’s Helvetia Half-Marathon in 1:23:11. In 2005, as a woman, she ran the same race in 1:34:01. Harper’s male time was about fifty seconds faster than her female time. She has compiled data from five other runners who have transitioned from male to female, and all show the same pattern of precipitous speed decline. One runner competed in the same 5K for fifteen years straight, eight times as a man and then seven times as a woman following testosterone suppression therapy; always faster than nineteen minutes as a man, and always slower than twenty minutes as a woman. (Epstein, 2013: 78) [Keep in mind that I have the nook version so the physical copy may have this on a different page.

Yes this is anecdotal evidence that testosterone gave an advantage while ‘male’ and then when they ‘transitioned’ to ‘female’ it showed that they became weaker, but still at the top level of women’s performance. Knowing this—how this man had an advantage ‘as a man’ and kept the same relative advantage when he ‘transitioned to a woman’ is a large clue that testosterone does infer an inherent advantage to athletes who have more of the hormone surging through their body.

Testosterone is known to affect skeletal muscle growth, but the mechanisms by which testosterone affects muscle growth are not known (Bhasin, Woodhouse, and Storer, 2001). Also, women with very high androgen levels—whether it’s due to endogenous or exogenous testosterone—have a 2.5 to 5 percent advantage over women who have androgen levels in the normal range (Berman, 2017). So the difference in performance—between women at least—with high and low levels of testosterone is not too great, though that 2.5 to 5 percent advantage most likely would come into play at the very end of the race.

Also recall that I previously wrote that, per the IOC guidelines, a ‘MtF’ needs to ‘declare herself’ a woman for at least four years while taking HRT for 1-2 years to be able to compete with ‘the gender they think they are’. Well, the testosterone levels that the IOC states is ‘OK’ for ‘MtFs’ is still in the low range of the new testosterone guidelines for men! Testosterone most definitely does give an advantage in sports. Think of sports as a modern day test of survival. Basically, those good at sports—such as football and basketball for instance—would have been better able to form hunting parties in our evolutionary past. So while forming these parties, testosterone rose since testosterone raises while men are in groups as well as preparing for competition (Booth et al, 1989). So since our modern body plans sprang up around 2 mya with the appearance of Homo erectus in the fossil record, we can logically infer that cooperation and testosterone—among other things—were needed to be successful hunters.

So if you look at most sports as just a way for men to have a competitive spirit and simulate fighting/hunting with other men, then it makes it clear that testosterone does infer an advantage in sports. For instance, there is a clear relationship between testosterone and explosive jumping (Cardinale and Stone, 2006). These relationships are very clear, have large effects yet bodies like the IOC disregard these findings, allowing MtFs to compete with real women, even when the data and verbal argumentation against letting them compete are logically sound.

Studies do state, of course, that the relationship between high testosterone and athletic performance hasn’t been proven, they also haven’t been refuted either (Sudai, 2017). In fact, all you need to look at is traits that are influenced by testosterone—height, size of limbs, fat mass, shoulder width/size (the most androgen receptors lie in the shoulders and traps muscles, so to tell if someone is juicing, they will have low levels of body fat but ‘3-D delts’ and large traps) etc. So just by looking at a few simple traits and then comparing anatomy with females who have high testosterone compared to women who do not have high levels of testosterone, we can draw the logical conclusion that testosterone does increase sports performance for both men and women, and we have both anecdotal and experimental evidence for the assertion.

In sum, the anecdotal evidence from Epstein’s book is a good start. However, we will need more than anecdotal evidence to prove that testosterone truly does give individuals an advantage if they do have higher testosterone levels than their competition. As larger studies get done, these effects will begin to get teased out. I am certain that testosterone will be found to give a huge advantage in terms of sports, and since sports are a way for us to compete with each other, impress women, gauge other males’ fighting skills, and began as a way to hone skills used to hunt and fight (Lombardo, 2012). Sports began as a way for us to develop the skills needed to survive and hunt, among other things, and so, to hunt, you need to have high levels of testosterone to give that ‘boost’. So if sports began as a way to gauge potential rivals and allies, and as a way to hone/improve fighting skills, then we can logically state that testosterone does give an advantage in sports competition.

Why Do Jamaicans, Kenyans, and Ethiopians Dominate Running Competitions?

2050 words

Much has been written about the genotypic and phenotypic differences in Jamaicans, Kenyans, and Ethiopians. Why do they dominate these competitions? Is it cultural? Genetic? Does training matter more? Grit? Expertise? There are multiple reasons that they have such an advantage, the most important one being their morphology/somatype. Of course other physiologic and morphologic factors come into play for these three populations, but the greatest physical advantage they have is their somatype which lends itself to running—whether short, medium or long distance.

Back in July, I argued that the wide-hipped Neanderthals were stronger than the recently migrated Homo sapiens, due mostly to pelvic anatomy (along with Neanderthal protein intake). That’s one of the keys to explaining African dominance in running: their long slender bodies with high limb ratios.

Kenyans and Ethiopians

Kenyan distance running is driven by an ethny named the Kalenjin, particularly of the Nandi tribe. Much research has been undertaken on the physiology and morphology of certain subpopulations of Kenyans, with a complex genotype, phenotype, and even SES interaction driving the dominance of this subpopulation (Tucker, Onywera, and Santos-Concejero, 2015). Another important factor is their low BMI. Kenyans have the lowest BMIs in the world at 21.5, which considerably helps in regards to distance running (Radovanovic et al, 2014; Shete, Bute, and Deshmukh, 2014Sedeaud et al, 2015).

Kenyans—like Jamaicans and Ethiopians—dominate these competitions due to a complex interaction between genes, environment and SES (Tucker, Onywera, and Santos-Concejero, 2015). Though, of course, a lot of what makes certain Kenyan populations dominate is trainable in other populations. Caucasians can have similar trainability in regards to Vo2 max, oxidative enzymes, and running economy. However, Kenyans are more likely to be slender with longer limbs which is a huge advantage in these competitions. So having a good running economy and a high Vo2 max may be the primary causal factors that cause them to be so good at distance running, with, as I’ve noted in the past, a higher genetic ceiling for high Vo2 max, along with high-altitude training (Larsen, 2003). Though Saltin et al (1995) conclude that physical activity during childhood combined with intense training as a teenager explains the higher Vo2 max in Kenyan boys. Other factors such as low blood lactate and ammonia accumulation are also important.

Genetics, though, is the most likely explanation for African distance-running dominance (Vancini et al, 2014; see Scott and Pitsiladis, 2007 for alternative view that as of yet there are no genetic evidence for African running superiority).

Not all studies show that Kenyans have more slow-twitch (type I) fibers than Caucasians, though the oxygen cost of running at a given velocity was found to be lower in elite Kenyan runners compared to non-Kenyans, which may be due to body dimensions. Apparently, there is no indication that Kenyans possess a pulmonary system that confers a physiologic advantage over non-Kenyans (Larsen and Sheel, 2015). Ethiopian diets, however, met the most recommendations for macronutrients, but fluids were lacking (Beis et al, 2011), similar to what is found on similar studies in Kenyans (Onywera et al, 2003).

It is important to note that not all of the literature out there says that there are mainly physiologic/genetic reasons for their success in distance running; other factors that may be at play are somatype which leads to exceptional biomechanical and metabolic efficiency, high-altitude training, and the want to succeed for economic and social advancement (Wilbur and Pitsiladis, 2012). Oxygen transport of the blood doesn’t explain Kenyan dominance either, they have similar oxygen transport as elite German runners (Prommer et al, 2010). Though, women and men from Ethiopia and Kenya, although they only account for <0.1% of the marathons and half-marathons, achieved the fastest times and were the youngest in the half-marathons and full-marathons (Knechtle et al, 2016). Similar results were seen in Switzerland, with male Africans being faster and younger than non-Africans (Aschmann et al, 2013).

From the years 2000-2014, Knechtle et al (2017) analyzed the Boston, Berlin, New York, and Chicago marathon along with the Stockholm marathon. Over this time period, Ethiopian men improved their times, but Ethiopian women didn’t. Age increased in Ethiopian men, but not women. Female and male marathon runners from Ethiopia were the fastest (Knechtle et al 2017). More studies, though, are needed to unravel the complex relationship between environmental and genetic factors that cause East Africans to dominate distance running (Onywera, 2009). However, elite endurance athletes consistently test higher than non-elite athletes on running economy, Vo2 max, and anaerobic threshold (Lorenz et al, 2013), and mechanical work may be able to predict recreational long distance performance (Tartaruga et al, 2013).

Jamaicans

Jamaican sprinting dominance has been chalked up to numerous factors, most recently, symmetry of the knees and ankles (Trivers, Palestis, and Manning, 2013; Trivers et al, 2014). Trivers et al (2014) write in the Discussion:

Jamaicans are the elite sprinters of the world. Why? If symmetry of knees and ankles is a factor, why should Jamaicans be especially symmetrical (there is no knowledge of whether they actually are)? One possibility is heterozygosity for genes important to sprinting. The slave trade greatly increased heterozygosity on the West African side by mixing genes up and down the West coast of Africa from Senegal to Nigeria [15][16]. Recently a mtDNA haplotype has been isolated that correlates with success in African American–but not Jamaican–sprinters [17]. Since there is a general (if often weak) positive relationship between heterozygosity and body symmetry [18] we are eager to do targeted studies of genomics on areas associated with sprinting, including energy substrate utilization, muscle fibre-type distribution and body composition analyses (with specific reference to the shape and size of the glutei maximi). Fast twitch (anaerobic) muscle fibres are characterized by specific adaptations which benefit the performances of explosive high-intensity actions such as those involved in sprinting. Notably, West Africans appear to have a higher fast twitch muscle fibre content than do comparable Europeans (67.5% vs 59% in one sample [19], as cited in [20]).

It’s interesting to note that the mtDNA haplotype predicts success in African American sprinters, but not Jamaicans. In regards to mtDNA haplotypes, Jamaican sprinters had statistically similar mtDNA haplotypes, which suggests that the elite sprinters arose from the same source population which indicates that there is no population stratification or isolation on sprint performance. African American sprinters and non-sprinters, on the other hand, had statistically significant differences in mtDNA, which implies that maternal ancestry plays a part in sprinting performance (Deason et al, 2011). Studying both maternal and paternal haplotypes to see where source populations originate is important in these fields, since if we know where their population came from, then we can better understand the hows and whys of elite running performance—especially between race. Though demographic studies on Jamaicans show that elite sprinters come from the same demographic population, so genetics cannot possibly account for Jamaican sprinting success, so their sprinting success may be related to environmental and social factors (Irving et al, 2013). We know little about the genomics of elite sporting performance (Pitsiladis et al, 2013), so the physical correlates (somatype) and physiologic correlates will do for now.

Usain Bolt is the current fastest man in the world, due in part to his anthropometric advantage (Krzystof and Mero, 2013). As everyone knows, you cannot teach speed (Lombardo and Deaner, 2014). Bolt himself has a large advantage, in part, to his power development and biomechanical efficiency compared to the people he competes with (Beneke and Taylor, 2010). Though one study has noted that a human may be able to run faster quadrupedally than bipedally–stating that at the 2048 Olympic Games, that the fastest human on the planet may well be a quadrupedal runner (Kinugasa and Usami, 2016). One of the most important factors of acceleration in the 100m sprint is stride frequency (Mackala, Fostiak, and Kowalski, 2015).

In Afro-Caribbean adolescents, body height and stride number to body height ratio were the main determinants of sprint performance (Copaver, Hertogh, and Hue, 2012). Body height being a predictor of sprint performance is nothing new; taller people have longer limbs; longer limbs cover more distance per step. Indeed, sprinters are taller than the American population, there is more variability in men than in women, sprinters have lower body mass and the height range excludes people who are really tall or really short (Uth, 2005).

Fiber typing

I will touch on fiber typing again since I’ve come across new information on it.

East Asians are less likely to have the RR allele of the ‘sprint gene’ (MacArthur and North, 2004) (ACTN3) while Bantus are more likely to have it. Alpha-actinen-3 is a skeletal muscle isoform which is encoded by the ACTN3 gene. Alpha-actinen-3 deficiency is common in the general population (North, 2008; Berman and North, 2010), which means that most people in the general population are XX. Eighteen percent of the population on earth is homozygous for this mutation (Ivarsson and Westerblad, 2015). This allele is the 577X allele, and Bantus are less likely to have it while Eurasians are more likely to have it. The frequency of the RR genotype is also highest in Bantus than in Asians (Mills et al, 2001). This is one very important reason why Eurasians are not faster than Africans (somatype matters too, of course).

Elite sprinters are more likely to be RR and less likely to be XX. Why does this matter? It matters because the RR genotype with the right morphology, fiber type (fast twitch) and contractile properties of the individual fast twitch fibers contribute to heightened performance with an RR genotype (Broos et al, 2016). Jamaicans are also less likely to have the XX genotype (~2 percent) along with Kenyans (Scott et al, 2010). So this shows that since Jamaicans are less likely to be XX, they’re more likely to be RR. So since XX i negatively associated with sprint status, then populations that have a lower frequency will be more likely to have more sprinters, whereas a population that has the genotype will have fewer sprinters.

This is one of many genetic factors that account for elite sprinting performance between populations. So, clearly, the right muscle fiber type combined with the right genotype from the ACTN3 gene infers an advantage, contrary to Daniel MacArthur’s claims that it does not (one of the authors of numerous studies on the ACTN3 gene).

Conclusion

The genetics of sprinting/distance running is currently poorly understood. Though we have a few candidates (and they’re really good, showing variation where they should) like the RR ACTN3 genotype combined with fast twitch fibers. This is very important to note. If you’re missing this, and you’re short with a low Vo2 max and low limb length, there’s an extremely high chance you will not be an elite sprinter/distance runner. I cannot emphasize enough how much the physical factors mean when it comes to this.

It is possible that SES variables combined with other psycho-social factors could explain why these three populations excel so well in these sports. Though, on the other hand, you cannot discount that the individual has to have the right somatype and physical capabilities first. Contrary to popular belief, fiber typing DOES give an advantage, especially if combined with other variables. Low BMI is very important, as are long limbs and a taller than average height.

When it comes to Jamaicans, symmetry of the knees and ankles help considerably, along with a low body mass and taller body. SES factors could be driving the will to compete in these three populations, however, the physical ability needs to be there first, then it needs to be nurtured. Over the next 5 to 10 years, we will have a better understanding of why some populations excel over others and that will largely be due to somatype, physiology, and genetic factors, with SES and other psycho-social factors driving the want to excel in the sport.

The physical differences that underlie the success of these three populations needs more study. Elite athletes of Jamaican, Kenyan, and Ethiopian descent need to be studied more to untangle the physiologic, psychological, physical and social factors that have them excel so well. We know that certain combinations of traits infer a great advantage in certain populations, we now just need enough elite athletes of these populations to study to see how and why they excel so much. The current body of research reviewed here is a good start, though it does leave some questions unanswered.

HBD and Sports: Baseball and Reaction Time

2050 words

If you’ve ever played baseball, then you have first-hand experience on what it takes to play the game, one of the major abilities you need is a quick reaction time. Baseball players are in the upper echelons in regards to pitch recognition and ability to process information (Clark et al, 2012).

Some people, however, believe that there is an ‘IQ cutoff’ in regards to baseball; since general intelligence is supposedly correlated with reaction time (RT), then those with higher RTs must have higher intelligence and vice-versa. However, this trait—in a baseball context—is trainable to an extent. To those that would claim that IQ would be a meaningful metric in baseball I pose two question: would higher IQ teams, on average, beat lower IQ teams and would higher IQ people have better batting averages (BAs) than lower IQ people? This, I doubt, because as I will cover, these variables are trainable and therefore talking about reaction time in the MLB in regards to intelligence is useless.

Meden et al (2012) tested athlete and non-athlete college students on visual reaction time (VRT). They tested the athletes’ VRT once, while they tested the non-athletes VRT two times a week for a 3 week period totaling 6 tests. Men ended up having higher VRTs in comparison to women, and athletes had better VRTs than non-athletes. So therefore, this study proves that VRT is a trainable variable. If VRT can be improved with training, then hitting and fielding can also be trained as well.

Reaction time training is the communication between the brain, musculoskeletal system and spinal cord, which includes both physical and cognitive training. So since VRT can be trained, then it makes logical sense that Major League hitting and fielding can be trained as well.

David Epstein, author of The Sports Gene says that he has a faster reaction time than Albert Pujols:

One of the big surprises for me was that pro athletes, particularly in baseball, don’t have faster reflexes on average than normal people do. I tested faster than Albert Pujols on a visual reaction test. He only finished in the 66thpercentile compared to a bunch of college students.

It’s not a superior RT that baseball players have in comparison to the normal population, says Epstein, but “learned perceptual skills that the MLB players don’t know they learned.” Major League baseball players do have average reaction times (Epstein, 2013: 1) but a far superior visual acuity. Most pro-baseball players had visual acuity of 20/13, with some players having 20/11; the theoretical best visual acuity that is possible is 20/8 (Clark et al, 2012). Laby, Kirschen, and Abbatine show that 81 percent of the 1500 Major and Minor League Mets and Dodgers players had visual acuities of 20/15 or better, along with 2 percent of players having a visual acuity of 20/9.2. Baseball players average a 20/13 visual acuity with the best eyesight humanly possible being 20/8. (Laby et al, 1996).

So it’s not faster RT that baseball players have, but a better visual acuity—on average—in comparison to the general population. Visual reaction time is a highly trainable variable, and so since MLB players have countless hours of practice, they will, of course, be superior on that variable.

Clark et al (2012) showed that high-performance vision training can be performed at the beginning of the season and maintained throughout the season to improve batting parameters. They also state that visual training programs can help hitters, since the eyes account for 80 percent of the information taken into the brain. Reichow, Garchow, and Baird (2011) conclude that a “superior ability to recognize pitches presented via tachistoscope may correlate with a higher skill level in batting.” Clark et al (2012) posit that their training program will help batters to better recognize the spot of the ball and the pitcher’s finger position in order to better identify different pitches. Clark et al (2012) conclude:

The University of Cincinnati baseball team, coaches and vision performance team have concluded that our vision training program had positive benefits in the offensive game including batting and may be providing improved play on defense as well. Vision training is becoming part of out pre-season and in season conditioning program as well as for warmups.

Classe et al (1997) showed that VRT was related to batting, but not fielding or pitching skill. Further, there was no statistically significant difference observed between VRT and age, race or fielding. Therefore, we can say that VRT has no statistical difference on race and does not contribute to any racial differences in baseball.

Baseball and basketball athletes had faster RTs than non-athletes (Nakamoto and Mori, 2008). The Go/NoGo response that is typical of athletes is most certainly trainable. Kida et al (2005) showed that intensive practice improved the Go/NoGo reaction time, but not simple reaction time. Kida et al (2005: 263-264) conclude that simple reaction time is not an accurate indicator of experience, performance or success in sports; Go/NoGo can be improved by practice and is not innate (but simple reaction time was not altered) and the Go/NoGo reaction time can be “theoretically shortened toward a certain value determined by the simple reaction time proper to each individual.

In baseball players in comparison to a control group, readiness potential was significantly shorter for the baseball players (Park, Fairweather, and Donaldson, 2015).  Hand-eye coordination, however, had no effect on earned run average (ERA) or batting average in a sample of 410 Major and Minor League members of the LA Dodgers (Laby et al, 1997).

So now we know that VRT can be trained, VRT shows no significant racial differences, and that Go/NoGo RT can be improved by practice. Now a question I will tackle is: can RT tell us anything about success in baseball and is RT related to intelligence/IQ?

Khodadi et al (2014) conclude that “The relationship between reaction time and IQ is too complicated and revealing a significant correlation depends on various variables (e.g. methodology, data analysis, instrument etc.).” So since the relationship is too complicated between the two variables, mostly due to methodology and the instrument used, RT is not a good correlate of IQ. It can, furthermore, be trained (Dye, Green, and Bavelier, 2012).

In the book A Question of Intelligence, journalist Dan Seligman writes:

In response, Jensen made two points: (1) The skills I was describing involve a lot more than just reaction time, they also depended heavily on physcial coordination and endless practice. (2) It was, however, undoubtedly true that there was some IQ requirement-Jensen guessed it might be around 85- below which you could never recruit for major league baseball. (About one-sixth of Americans fall below 85).

I don’t know where Jensen grabbed the ‘IQ requirement’ for baseball, which he claims to be around 85 (which is at the black average in America). This quote, however, proves my point that there is way more than RT involved in hitting a baseball, especially a Major League fastball:

Hitting a baseball traveling at 100 mph is often considered one of the most difficult tasks in all of sports. After all, if you hit the ball only 30% of the time, baseball teams will pay you millions of dollars to play for them. Pitches traveling at 100 mph take just 400 ms to travel from the pitcher to the hitter. Since the typical reaction time is 200 ms, and it takes 100 ms to swing the bat, this leaves just 100 ms of observation time on which the hitter can base his swing.

This lends more credence to the claim that hitting a baseball is more than just quick reflexes; considerable training can be done to learn certain cues that certain pitchers use; for instance, like identifying different pitches a particular pitcher does with certain arm motions coming out of the stretch. This, as shown above in the Epstein quote, is most definitely a trainable variable.

Babe Ruth, for instance, had better hand-eye coordination than 98.8 percent of the population. Though that wasn’t why he was one of the greatest hitters of all time; it’s because he mastered all of the other variables in regards to hitting, which are learnable and not innate.

Witt and Proffitt (2005) showed that the apparent ball size is correlated with batting average, that is, the better batters fared at the plate, the bigger they perceived the ball to be so they had an easier time hitting it. Hitting has much less to do with reaction time and much more to do with prediction, as well as the pitching style of the pitcher, his pitching repertoire, and numerous other factors.

It takes a 90-95 mph fast ball about 400 milliseconds to reach home plate. It takes the brain 100 milliseconds to process the image that the eyes are taking in, 150 milliseconds to swing and 25 milliseconds for his brain to send a signal to his body to swing. This leaves the hitter with 125 milliseconds left to hit the incoming fastball. Clearly, there is more to hitting than reaction time, especially when all of these variables are in play. Players have .17 seconds to decide whether or not to hit a pitch and where to place their bat (Clark et al, 2012)

A so-called ‘IQ cutoff’ for baseball does exist, but only because IQs lower than 85 (once you begin to hit the 70s range, especially the lower levels) indicate developmental disorders. Further, the 85-115 IQ range encompasses 68 percent of the population. However, RT is not even one of the most important factors in hitting; numerous other (trainable) variables influence fastball hitting, and all of the best players in the world employ these strategies. People may assume that since intelligence and RT are (supposedly) linked, that baseball players, since they (supposedly) have quick RTs. Nevertheless, if quick RTs were correlated with baseball profienciency—namely, in hitting, then why are Asians 1.2 percent of the players in the MLB? Maybe because RT doesn’t really have anything to do with hitting proficiency and other variables have more to do with it.

People may assume that since intelligence and RT are (supposedly) linked, that baseball players, since they (supposedly) have quick RTs then they must be intelligent and therefore there must be an IQ cutoff because intelligence/g and RT supposedly correlate. However, I’ve shown 2 things: 1) RT isn’t too important to hitting at an elite level and 2) more important skills can be acquired in hitting fastballs, most notable, in my opinion, is pitch verification and the arm location of the pitcher. The Go/NoGo RT can also be trained and is, arguably, one of the most important training systems for elite hitting. Clearly, elite hitting is predicated on way more than just a quick RT; and most of the variables that are involved in elite hitting are most definitely trainable, as reviewed in this article.

People, clearly, make unfounded claims without having any experience in something. It’s easy to make claims about something when you’re just looking at numbers and attempting to draw conclusions based on data. But it’s a whole other ballgame (pun intended) when you’re up at the plate yourself or coaching someone on how to hit or play in the infield. These baseless claims would be avoided a lot more if only the people who make these claims had any actual athletic experience. If so, they would know of the constant repetition that goes into hitting and fielding, the monotonous drills you have to do everyday until your muscle memory is trained to flawlessly—without even thinking about it—throw a ball from shortstop to first base.

Practice, especially Major League practice, is pivotal to elite hitting; only with elite practice can a player learn how to spot the ball and the pitcher’s finger position to quickly identify the pitch type in order to decide if he wants to swing or not. In conclusion, a whole slew of cognitive/psychological abilities are involved in the upper echelons of elite baseball, however a good majority of the traits needed to succeed in baseball are trainable, and RT has little to do with elite hitting.

(When I get time I’m going to do a similar analysis like what I wrote about in the article on my possible retraction of my HBD and baseball article. Blacks dominate in all categories that matter, this holds for non-Hispanic whites and blacks as well as Hispanic blacks and whites, read more here. Nevertheless, I may look at the years 1997-2017 and see if anything has changed from the analysis done in the late 80s. Any commentary on that matter is more than welcome.)

Racial Differences in Jock Behavior: Implications for STI Prevalence and Deviance

1350 words

The Merriam-Webster dictionary defines jock asa school or college athlete” and “a person devoted to a single pursuit or interest“. This term, as I previously wrote about, holds a lot of predictive power in terms of life success. What kind of racial differences can be found here? Like with a lot of life outcomes/predictors, there are racial differences and they are robust.

Male jocks get more sex, after controlling for age, race, SES and family cohesion. Being involved in sports is known to decrease sexual promiscuity, however, this effect did not hold for black American jocks, with the jock label being associated with higher levels of sexual promiscuity (Miller et al, 2005). Black American jocks reported significantly higher levels of sexual activity than non-black jocks, but they did not find that white jocks too fewer risks than their non-jock counterparts.

Black Americans do have a higher rate of STDs compathe average population (Laumann et al, 1999Cavanaugh et al, 2010; CDC, 2015). Black females who are enrolled in, or have graduated from college had a higher STI (sexually transmitted infection) rate (12.4 percent self-reported; 13.4 percent assayed) than white women with less than a high school diploma (6.4 percent self-reported; 2.3 percent assayed) (Annang et al, 2010). I would assume that these black women would be more attracted to black male jocks and thusly would be more likely to acquire STIs since black males who self-identify as jocks are more sexually promiscuous. It seems that since black male jocks—both in high school and college—are more likely to be sexually promiscuous, this then has an effect on even the college-educated black females, since higher educational status has one less likely to acquire STIs.

Whites use the ‘jock identity’ in a sports context whereas blacks use the identity in terms of the body. Black jocks are more promiscuous and have more sex than white jocks, and I’d bet that black jocks have more STDs than white jocks since they are more likely to have sex than white jocks. Jock identity—but not athletic activity and school athlete status—was a better predictor of juvenile delinquency in a sample of 600 Western New York students, which was robust across gender and race (Miller et al, 2007a). Though, surprisingly, the ‘jock effect’ on crime was not as you would expect it: “The hypothesis that effects would be stronger for black adolescents than for their white counterparts, derived from the work of Stark et al. 1987 and Hughes and Coakley (1991), was not supported. In fact, the only clear race difference that did emerge showed a stronger effect of jock identity on major deviance for whites than for blacks” (Miller et al, 2007a).

Miller et al (2007b) found that the term jock means something different to black and white athletes. For whites, the term was associated with athletic ability and competition, whereas for blacks the term was associated with physical qualities. Whites, though, were more likely to self-identify with the label of jock than blacks (37 percent and 22 percent respectively). They also found that binge drinking predicted violence amongst family members, but in non-jocks only. The jock identity, for whites and not blacks, was also associated with more non-family violence while whites were more likely to use the aggression from sports in a non-sport context in comparison to blacks.

For black American boys, the jock label was a predictor of promiscuity but not for dating. For white American jocks, dating meant more than the jock label. Miller et al (2005) write:

We suggest that White male jocks may be more likely to be involved in a range of extracurricular status-building activities that translate into greater popularity overall, as indicated by more frequent dating; whereas African American male jocks may be “jocks” in a more narrow sense that does not translate as directly into overall dating popularity. Furthermore, it may be that White teens interpret being a “jock” in a sport context, whereas African American teens see it more in terms of relation to body (being strong, fit, or able to handle oneself physically). If so, then for Whites, being a jock would involve a degree of commitment to the “jock” risk-taking ethos, but also a degree of commitment to the conventionally approved norms with sanctioned sports involvement; whereas for African Americans, the latter commitment need not be adjunct to a jock identity.

It’s interesting to speculate on why whites would be more prone to risk-taking behavior than blacks. I would guess that it has something to do with their perception of themselves as athletes, leading to more aggressive behavior. Though certain personalities would be more likely to be athletic and thusly refer to themselves as a jock. The same would hold true for somatype as well.

So the term jock seems to mean different things for whites and blacks, and for whites, leads to more aggressive behavior in a non-sport context.

Black and females who self-identified as jocks reported lower grades whereas white females who self-identified as jocks reported higher grades than white females who did not self-report as jocks (Miller et al, 2006). Jocks also reported more misconduct such as skipping school, cutting class, being sent to the principals office, and parents having to go to the school for a disciplinary manner compared to non-jocks. Boys were more likely to engage in actions that required disciplinary intervention in comparison to girls, while boys were also more likely to skip school, have someone called from home and be sent to the principal’s office. Blacks, of course, reported lower grades than whites but there was no significant difference in misconduct by race. However, blacks reported fewer absences but more disciplinary action than whites, while blacks were less likely to cut class, but more likely to have someone called from home and slightly more likely to be sent to the principal’s office (Miller et al, 2006).

This study shows that the relationship between athletic ability and good outcomes is not as robust as believed. Athletes and jocks are also different; athletes are held in high regard in the eyes of the general public while jocks are seen as dumb and slow while also only being good at a particular sport and nothing else. Miller et al (2006) also state that this so-called ‘toxic jock effect‘ (Miller, 2009Miller, 2011) is strongest for white boys. Some of these ‘effects’ are binge drinking and heavy drinking, bullying and violence, and sexual risk-taking. Though Miller et al (2006) say that, for this sample at least, “It may be that where academic performance is concerned, the jock label constitutes less of a departure from the norm for white boys than it does for female or black adolescents, thus weakening its negative impact on their educational outcomes.

The correlation between athletic ability and jock identity was only .31, but significant for whites and not blacks (Miller et al, 2007b). They also found, contrary to other studies, that involvement in athletic programs did not deter minor and major adolescent crime. They also falsified the hypothesis that the ‘toxic jock effect’ (Miller, 2009; Miller, 2011) would be stronger for blacks than whites, since whites who self-identified as jocks were more likely to engage in delinquent behavior.

In sum, there are racial differences in ‘jock’ behavior, with blacks being more likely to be promiscuous while whites are more likely to engage in deviant behavior. Black women are more likely to have higher rates of STIs, and part of the reason is sexual activity with black males who self-identify as jocks, as they are more promiscuous than non-jocks. This could explain part of the difference in STI acquisition between blacks and whites. Miller et al argue to discontinue the use of the term ‘jock’ and they believe that if this occurs, deviant behavior will be curbed in white male populations that refer to themselves as ‘jocks’. I don’t know if that will be the case, but I don’t think there should be ‘word policing’, since people will end up using the term more anyway. Nevertheless, there are differences between race in terms of those that self-identify as jocks which will be explored more in the future.

Nerds vs. Jocks: Different Life History Strategies?

1150 words

I was alerted to a NEEPS (Northeastern Evolutionary Psychology Society) conference paper, and one of the short abstracts of a talk had a bit about ‘nerds’, ‘jocks’, and differing life history strategies. Surprisingly, the results did not line up with current stereotypes about life outcomes for the two groups.

The Life History of the Nerd and Jock: Reproductive Implications of High School Labels

The present research sought to explore whether labels such as “nerd” and “jock” represent different life history strategies. We hypothesized that self-identified nerds would seek to maximize future reproductive success while the jock strategy would be aimed at maximizing current reproductive success. We also empirically tested Belsky’s (1997) theory of attachment style and life history. A mixed student/community sample was used (n=312, average age = 31) and completed multiple questionnaires on Survey Monkey. Dispelling stereotypes, nerds in high school had a lower income and did not demonstrate a future orientation in regards to reproductive success, although they did have less offspring. Being a jock in high school was related to a more secure attachment style, higher income, and higher perceived dominance. (NEEPS, 2017: 11)

This goes against all conventional wisdom; how could ‘jocks’ have better life outcomes than ‘nerds’, if the stereotype about the blubbering idiot jock is supposedly true?

Future orientation is The degree to which a collectivity encourages and rewards future-oriented behaviors such as planning and delaying gratification (House et al, 2004,p. 282). So the fact that self-reported nerds did not show future orientation in regards to reproductive success is a blow to some hypotheses, yet they did have fewer children.

However, there are other possibilities that could explain why so-called nerds have fewer children, for instance, they could be seen as less attractive and desirable; could be seen as anti-social due to being, more often than not, introverted; or they could just be focusing on other things, and not worrying about procreating/talking to women so they end up have fewer children as result. Nevertheless, the fact that nerds ended up having lower income than jocks is pretty telling (and obvious).

There are, of course, numerous reasons why a student should join a sport. One of the biggest is that the skills that are taught in team sports are most definitely translatable to the real world. Most notably, one who plays sports in high school may be a better leader and command attention in a room, and this would then translate over to success in the post-college/high school world. The results of this aren’t too shocking—to people who don’t have any biases, anyway.

Why may nerds in high school have had lower income in adulthood? One reason could be that the social awkwardness did not translate into dollar signs after high school/college graduation, or chose a bad major, or just didn’t know how to translate their thoughts into real-world success. Athletes, on the other hand, have the confidence that comes from playing sports and they know how to work together with others as a cohesive unit in comparison to nerds, who are more introverted and shy away from being around a lot of people.

Nevertheless, this flew in the faces of the stereotypes of nerds having greater success after college while the jocks—who (supposedly) don’t have anything beyond their so-called ‘primitive’ athletic ability—had greater success and more money. This flies in the face of what others have written in the past about how nerds don’t have greater success relative to the average population, well this new presentation says otherwise. Thinking about the traits that jocks have in comparison to nerds, it doesn’t seem so weird that jocks would have greater life outcomes in comparison to nerds.

Self-reported nerds, clearly, don’t don’t have the confidence to make the stratospheric amounts of cash that people would assume that they should make because they are knowledgeable in a few areas, on the contrary. Those who could use their body’s athletic ability had more children as well as had greater life success than nerds, which of course flew in the face of stereotypes. Certain stereotypes need to go, because sometimes stereotypes do not tell the truth about some things; it’s just what people believe ‘sounds good’ in their head.

If you think about what it would take, on average, to make more money and have great success in life after high school and college, you’ll need to know how to talk to people and how to network, which the jocks would know how to do. Nerds, on the other hand, who are more ‘socially isolated’ due to their introverted personality, would not know too much about how to network and how to work together with a team as a cohesive unit. This, in my opinion, is one reason why this was noticed in this sample. You need to know how to talk to people in social settings and nerds wouldn’t have that ability—relative to jocks anyway.

Jocks, of course, would have higher perceived dominance since athletes have higher levels of testosterone both at rest and exhaustion (Cinar et al, 2009). Athletes, of course, would have higher levels of testosterone since 1) testosterone levels rise during conflict (which is all sports really are, simulated conflict) and 2) dominant behavior increases testosterone levels (Booth et al, 2006). So it’s not out of the ordinary that jocks were seen as more dominant than their meek counterparts. In these types of situations, higher levels of testosterone are needed to help prime the body for what it believes is going to occur—competition. Coupled with the fact that jocks are constantly in situations where dominance is required; engage in more physical activity than the average person; and need to keep their diet on point in order to maximize athletic performance, it’s no surprise that jocks showed higher dominance, as they do everything right to keep testosterone levels as high as possible for as long as possible.

I hope there are videos of these presentations because they all seem pretty interesting, but I’m most interested in locating the video for this specific one. I will update on this if/when I find a video for this (and the other presentations listed). It seems that these labels do have ‘differing life history strategies’, and, despite what others have argued in the past about nerds having greater success than jocks, the nerds get the short end of the stick.

Preliminary Thoughts on ‘Male-to-Female’ Transgenders in Sports

1500 words

(See my article on transvestic disorder and gender dysphoria for an intro on my view of transgenderism.)

I have been researching male-to-female (MtF) transgenders (TGs) in sports for the past few months. I, like we all do, have my own biases with what should be done with this problem (not letting them compete with women), however jumping to my initial bias there would not be fair so I’ve undertaken the task of reading as many journal articles on the matter as I possibly can. From my research on the matter, there is no direct consensus in the literature that I could come across. In this article, I will show some of the research I’ve found and how it is inconclusive (as well as interject my own thoughts on the matter, mainly speaking about bone density, somatype, and testosterone). (I will cover female-to-male (FtM) transgenders in a future article.)

One recent article making its way around the news is of a MtF who won a weightlifting competition. He (I will be referring to the people I reference by their biological sex) had a total of 590 pounds, besting the second place winner by 42 pounds. Hubbard (the weightlifter who ‘transitioned’) is 39 and has been ‘transitioning’ since his mid-30s. He has also had previous experience competing. The IOC (International Olympic Committee) has no guidelines that a TG athlete must undergo ‘sex-reassignment surgery’, however, they must be on hormone replacement therapy (HRT) for at least 12 months and demonstrate that they have testosterone levels ‘within acceptable limits’. Well, what are ‘acceptable limits’?

The IOC has a short paper on this matter, writing:

The athlete must demonstrate that her total testosterone level in serum has been below 10 nmol/L for at least 12 months prior to her first competition (with the requirement for any longer period to be based on a confidential case-by-case evaluation, considering whether or not 12 months is a sufficient length of time to minimize any advantage in women’s competition).

The athlete’s total testosterone level in serum must remain below 10 nmol/L throughout the period of desired eligibility to compete in the female category.

Compliance with these conditions may be monitored by testing. In the event of non-compliance, the athlete’s eligibility for female competition will be suspended for 12 months.

So the MtF athlete must have a testosterone level of less than 10 nanomoles and declare that they are ‘female’ for at least four years. The IOC states that the individual must be taking HRT for a year or two—whenever they are able to show that their testosterone levels are below that 10 nanomolar mark, they are then allowed to compete. However, other members of the IOC have stated that 10 nanomoles is too high (which is the lower end for males) while arguing that it should be reduced to 3 nanomoles per liter of blood (3 nanomoles is the upper-end for women).

10 nanomoles per liter of blood converts to about 288 ng/dl (nanograms per deciliter). Going with the lower end suggested by other members of the IOC, 3 nanomoles per deciliter of blood converts to 87 ng/dl. The range for women is 15 to 70 ng/dl. Now, the 10 nmol/l is, as you can see, way too high. However, 10 nmol/l converts to slightly higher than the lower end of the new testosterone guidelines for the average male in America and Europe (which I covered yesterday, the new levels being 264-916 ng/dl). As we can see, even 10 nmol/l is way too high and, in my opinion, will give an unfair advantage to these athletes (I know that there is no consensus on whether or not testosterone does give an inherent advantage to MtFs of to hyperandrogenic women; I provide evidence for that below).

In regards to women and hypoandrogenism, Stanton and Wood (2011) state that “excess production of endogenous testosterone due to inborn disorders of sexual development (DSD) may convey a competitive advantage.” The fact of the matter is, endogenous and exogenous testosterone does convey an advantage. So if having higher levels of testosterone conveys a physical advantage in said sport, then 10 nmol/l is way too high. Therefore, the only way (in the eyes of the IOC, not in my opinion) for MtFs to compete with women is to get ‘sex-reassignment surgery’, as the gonads will be removed and testosterone levels will plummet. But how by how much?

In a new review of the literature, Jones et al (2017) state that “there is no direct or consistent research suggesting transgender female individuals (or male individuals) have an athletic advantage at any stage of their transition (e.g. cross-sex hormones, gender-confirming surgery) and, therefore, competitive sport policies that place restrictions on transgender people need to be considered and potentially revised.” They further state that, in most instances, testosterone levels in MtFs “[tended] to be lower than average compared with cisgender women.” So they conclude that there is no evidence that MtFs have no inherent advantage since 1) most of them have lower levels of testosterone than ‘cis-gendered women’, and 2) that there is ‘no evidence’ of testosterone conferring an advantage in athletes (I beg to differ there). The review by Jones et al is a great starting point, however, I disagree with them on numerous things (which I will cover in greater depth in an upcoming, exhaustive research article).

Mueller et al (2011) studied a sample of 84 MtFs who were treated with 10 mg of oestradiol every ten days. They were “treated with subcutaneous injections of 3.8 mg goserelin acetate every 4 weeks to suppress endogenous sex hormone secretion completely.” Follow-ups then commenced at 12 and 24 months. It was found that their BMI, fat mass, and lumbar bone mineral density (BMD) had increased. Conversely, they had a significant decrease in lean mass with a concurrent increase in BMI, which would lead to strength decreases and increased range of motion (ROM), and there was no effect on femoral bone density. This is a larger study than most, most studies having ns of ~20, so the results are robust for this research.

Even if MtFs have a decrease in lean mass and gain in fat mass, they still have inherent biological advantages over women. Testosterone, of course, is not the only reason why men are superior to women in most sports (contrary to the literature). Muscle fiber distribution, cross-sectional area, leverages, etc all play a part in why men are better at sports than women (this is covered at length in Man the Athlete). To the best of my knowledge, cross-sectional area, muscle fiber distribution and leverages don’t change. This is another physical advantage that MtFs would have over ‘cis-gendered women’.

Hyperandrogenic women have also been the center of a lot of controversy (if you follow the Olympics, you may have heard about it occurring during the last Games). Hyperandrogenism affects 5-10 percent of women that are of reproductive age. Signs of hyperandrogenism include hirsutism (hairiness in women), androgenic alopecia (Price, 2003), acne, and virilization (the development of male body hair, bulk, and a deep voice, male-typical characteristics) (Yildiz, 2006). After Caster Semenaya’s dominating win in the middle distance run during last year’s Olympics, the IOC revised their regulations on hyperandrogenic women.

However, Karkazis et al (2016) argued against the IOC and IAAF (International Association of Athletics Federation) stating that “The current scientific evidence, however, does not support the notion that endogenous testosterone levels confer athletic advantage in any straightforward or predictable way.” I strongly disagree with the contention, which I will cover at length in the future. (See Cardinale and Stone, 2006; Wood and Stanton, 2012Vanny and Moon, 2015.) Of course testosterone is not the only biological factor that confers an advantage, but the difference between hyperandrogenic women and normal women is large (hyperandrogenic women have three times the testosterone compared to normal women, so between 45 to 210 ng/dl). So should they be allowed to compete with women with average levels of testosterone?

Men are built differently than women. Even with HRT, MtFs people would still have an advantage over women. The differences are biological, physiological and anatomic in nature and surgery nor HRT will affect certain factors that would confer an advantage due to the sex the person was born as. That part, in my opinion, is the key factor at play. The difference between MtFs and women do not go away due to surgery and HRT (though some do), so since MtFs have certain biological, anatomical and physiological differences, they should not be allowed to compete with women. That is the one main factor in this debate that is being overlooked. And due to these inherent advantages, they should be barred from competing with women.

This then brings up some interesting implications. Should we segregate competitions by race since the races have strengths and weaknesses due to biology and anatomy, such as somatype? It’s an interesting question to consider, but I think we can all agree on one thing: Women should compete with women, and men should compete with men. Thus, transgenders should compete with transgenders. Even the IOC’s regulations are too high, and in my opinion (contra the literature), testosterone does confer an advantage to those who have it in higher levels (i.e. MtFs). Even then, disregarding testosterone, there are a slew of reasons as to why MtFs should not compete with women which will be covered more in the future.