NotPoliticallyCorrect

Home » Brain size

Category Archives: Brain size

Microcephaly and Normal IQ

1400 words

In my last article on brain size and IQ, I showed how people with half of their brains removed and people with microcephaly can have IQs in the normal/above average range. There is a pretty large amount of data out there on microcephalics and normal intelligence—even a family showing normal intelligence in two generations despite having dominantly inherited microcephaly.

Microcephaly is a condition in which an individual has a head circumference of 2 SD below the mean. Though most would think that would doom all microcephalics to low IQs, 15 percent of microcephalics have IQs in the normal range. This is normally associated with mental retardation, but this is a medical myth (Skoyles and Sagan, 2002: 239), though there are numerous cases of microcephalics having normal IQs (Dorman, 1991). Numerous studies show that it’s possible for normal people to have small brains. Giedd et al (1996) showed a wide variation in head circumference. Of the 104 individuals who had their heads scanned, volume for the cerebellum ranged from 735 cc in a 10 year old boy to 1470 cc in a 14 year old boy (Skoyles, 1999: 4, para 12). Though Giedd et al (1996) did not report total brain volumes in their subjects, brain volume can be inferred. Skoyles (1999; 4, para 12) writes:

The cerebral cortex makes up only 86.4% of brain volume when measured by MRI (Filipek, Richelme, Kennedy & Caviness, 1994), so the total brain volume of the 10-year-old would be larger at 850.7 cc. Brains at 10 years are about 4.4% smaller than adult size (Dekaban & Sadowsky, 1978), suggesting that that brain would grow to an adult size of 888 cc. Even using the lower figure of 80% cerebrum to brain ratio derived from anatomical studies suggests a figure of only 960 cc.

The variation of 888 cc to 960 cc depending on which value for the cerebrum to brain ratio you use still shows that people can have brains 450-300 cc lower than average and still be ‘normal’.

Researchers began noticing many cases of both individuals and families exhibiting features of microcephaly—but they had normal intelligence (Simila, 1970;Seemanova et al, 1985; Rossi et al, 1987Teebi et al, 1987; Sherrif and Hegab, 1988Desch et al, 1990Opitz and Holt, 1990Evans, 1991; Heney et al, 1991Green et al, 1995Rizzo and Pavone, 1995; Teebi and Kurash, 1996; Innis et al, 1997Kawame, Pagon, and Hudgens, 1997Abdel-Salam et al, 1999Digweed, Reis, and Sperling, 1999Woods, Bond, and Enard, 2005; Ghaoufari-Fard et al, 2015). This is a pretty huge blow to the brain size/IQ correlation, for if people with such small heads can have normal IQs, why do we have such large brains that leave us with such large problems (Skoyles and Sagan, 2002: 240-244)?

If we can have smaller heads—which would make childbirth easier and allow us to continue to have smaller pelves which would be conducive to endurance running since we are the running ape, why would brains have gotten so much larger from that of erectus (where modern people can have normal IQs with erectus-sized brains) if it is perfectly possible to have a brain on around the size of early erectus? In any event, these anomalies need an explanation, and Skoyles (1999) hypothesizes that people with smaller heads but normal IQs may have a lower capacity for expertise. This is something that I will look into in the future, as it may explain these anomalies, along with the true reason why our brains began increasing around 3 mya.

Sells (1977)—using the criteria of 2 SD below mean head size—showed that 1.9 percent of the children he tested (n=1009) had IQs indistinguishable from their normocephalic peers. Watemberg et al (2002) studied 1,393 patients. They found that almost half of their patients with microcephaly  (15.4% of their patients studies had microcephaly) had IQs within the normal limits, while among those with sub-normal intelligence, 30 percent had borderline IQs or were mildly mentally retarded (it’s worth noting that l-glutamate can raise IQ scores by 5-20 points in the mild to moderate mental deficiency; Vogel, Braverman and Draguns, 1966 review numerous lines of evidence that glutamate raises IQ in mentally deficient individuals). Sassaman and Zartler (1982) showed that 31.9 percent of microcephalics had normal intelligence, 6.9 percent of them had average intelligence.

Head circumference does not directly correlate with IQ in microcephalic patients (Baxter et al, 2009). Dorman (1991: 268) writes: “Decreased head size may or may not be associated with lowered intelligence, indicating that small head size by itself does not affect intelligence. The presence of subgroups of microcephalic persons who typically have normal intelligence is sufficient to rule out a causal relationship between head size and intellect. … It can be added that reduction in brain size without such structural pathology, as mayvoccur in some genetic conditions or evenvas a result of normal variation, does not
affect intelligence. 

Tenconi et al (1981) write: “We were able to examine five other members of this family (1-3; 11-1; 11-4; 11-5; 11-8) and found no abnormalities: they were of normal intelligence, head circumference, and ophthalmic evaluation. Members of the grandmother’s family who refused to be examined appeared to be of normal intelligence and head appearance and did not have any serious eye problems.

Stoler-Poria et al (2010) write: “There was a K-ABC cognitive score < 85 (signifying developmental delay) in two (10%) children from the study group and in one (5%) child from the control group: one of the children in the study group (the one with HC below − 3 SD) scored significantly below the normal range (IQ = 70), while the other scored in the borderline range (IQ = 83); the child from the control group also scored in the borderline range (IQ = 84).” Whereas Thelander and Pryor (1968) showed that individuals with head circumferences 2-2.6 SDs below the mean had average IQs, though the smaller their HC, the lower their IQ. Ashwal et al (2009: 891) write: “The students with microcephaly had a similar mean IQ to the normocephalic group (99.5 vs 105) but had lower mean academic achievement scores (49 vs 70).” So it seems that microcephalics can have normal IQs, but have lower academic achievement scores.

Primary microcephalics have higher IQs than secondary microcephalics (Cowie, 1987). Primary microcephaly is microcephaly that one is born with whereas secondary microcephaly is acquired.

There is one case study of a girl with microcephaly where Tan et al (2014) write: “Most recent measures of general intelligence (performed at 6½ years of age) reveal a below average full scale IQ of 75 with greatest impairment in processing speed. On the Wechsler Preschool and Primary Scale of Intelligence III Revised (for children 2 years 6 m – 7 years 3 m), she obtained a Verbal IQ of 83, Nonverbal IQ of 75, and Processing speed 71. On the Wechsler Individual Achievement Testing (WIAT) she showed significant struggles in secondary language on tasks of early reading (SS 60), word reading (SS 70), reading comprehension (SS 69) and struggles in math on the task of numerical operations (SS 61) (WPPSI – R and WIAT mean = 100 and SD = 15). Parents report subjectively that differences in development relative to her sisters are becoming more apparent with time.

It is not a foregone conclusion that if an individual has microcephaly that they will have a low IQ and be mentally retarded, as reviewed above, there are numerous cases of individuals with microcephaly and normal IQs, with this even being seen in families—that is, multiple families with normal IQs yet have microcephaly. Numerous people with Nijmegen breakage syndrome (a type of microcephaly) can have normal IQs. Rossi et al (1987) reported that for 6 Italian families (n=21 microcephalics) with autsomally inherited microcephaly, for those administered psychometric tests (n=12), all had normal IQs but one, with an IQ range of 99 to 112 for a mean of 99.3.

In conclusion, microcephalics can have normal IQs and live normal lives, despite having heads, on average, that are 2 SDs below the mean. These anomalies (and there are many, many more) need explaining. This is great evidence that a larger brain does not always mean a higher IQ, as well as yet more evidence that it was possible for Homo erectus to have an IQ in our range today, which means that we may not need brains our current size for our intellect and achievements. To conclude, I will provide a quote from Dorman (1991):

The normal intelligence found by SELLS in school children with small head size also militates against any straightforward relationship between diminished head size and lowered intelligence.

With the correlation between brain size and IQ being .4 (Gignac and Bates, 2017), this does not rule out the ‘outliers’ reviewed in this article. These cases deserve an explanation, for if large brains lead to high IQs, why do these people with heads significantly smaller have IQs in the normal range? (See Skoyles, 1999: 8, para 31 for an explanation for the brain size/IQ correlation.)

Advertisements

My Response to Jared Taylor’s Article “Breakthroughs in Intelligence”

1300 words

Here is my reply to Jared Taylor’s new article over at AmRen Breakthroughs in Intelligence:

“The human mind is not a blank slate; intelligence is biological”

The mind is not a ‘blank slate’, though there is no ‘biological’ basis for intelligence (at least in the way that hereditarians believe). They’re just correlations. (Whatever ‘intelligence’ is.)

“there is no known environmental intervention—including breast feeding”

There is a causal effect of breast feeding on IQ:

While reported associations of breastfeeding with child BP and BMI are likely to reflect residual confounding, breastfeeding may have causal effects on IQ. Comparing associations between populations with differing confounding structures can be used to improve causal inference in observational studies.

Brion, M. A., Lawlor, D. A., Matijasevich, A., Horta, B., Anselmi, L., Araújo, C. L., . . . Smith, G. D. (2011). What are the causal effects of breastfeeding on IQ, obesity and blood pressure? Evidence from comparing high-income with middle-income cohorts. International Journal of Epidemiology, 40(3), 670-680. doi:10.1093/ije/dyr020

Breastfeeding is related to improved performance in intelligence tests. A positive effect of breastfeeding on cognition was also observed in a randomised trial. This suggests that the association is causal.

Horta, B. L., Mola, C. L., & Victora, C. G. (2015). Breastfeeding and intelligence: a systematic review and meta-analysis. Acta Paediatrica, 104, 14-19. doi:10.1111/apa.13139

before long we should be able to change genes and the brain itself in order to raise intelligence.

Which genes? 84 percent of genes are expressed in the brain. Good luck ‘finding’ them…

These results corroborate with the results from previous studies, which have shown 84% of genes to be expressed in the adult human brain 

Negi, S. K., & Guda, C. (2017). Global gene expression profiling of healthy human brain and its application in studying neurological disorders. Scientific Reports, 7(1). doi:10.1038/s41598-017-00952-9

“Normal people can have extraordinary abilities. Prof. Haier writes about a non-savant who used memory techniques to memorize 67,890 digits of π! He also notes that chess grandmasters have an average IQ of 100; they seem to have a highly specialized ability that is different from normal intelligence. Prof. Haier asks whether we will eventually understand the brain well enough to endow anyone with special abilities of that kind.”

Evidence that intelligence is not related to expertise.

“It is only after a weight of evidence has been established that we should have any degree of confidence in a finding, and Prof. Haier issues another warning: “If the weight of evidence changes for any of the topics covered, I will change my mind, and so should you.” It is refreshing when scientists do science rather than sociology.”

Even with the “weight of evidence”, most people will not change their views on this matter.

“Once it became possible to take static and then real-time pictures of what is going on in the brain, a number of findings emerged. One is that intelligence appears to be related to both brain efficiency and structure”

Patterns of activation in response to various fluid reasoning tasks are diverse, and brain regions activated in response to ostensibly similar types of reasoning (inductive, deductive) appear to be closely associated with task content and context. The evidence is not consistent with the view that there is a unitary reasoning neural substrate. (p. 145)

Nisbett R. E., Aronson J., Blair C., Dickens W., Flynn J., Halpern D. F., Turkheimer E. Intelligence: New findings and theoretical developments. American Psychologist. 2012;67:130–159. doi: 10.1037/a0026699.

“Early findings suggested that smart people’s brains require less glucose—the main fuel for brain activity—than those of dullards.”

Cause and correlation aren’t untangled; they could be answering questions in a familiar format, for instance, and this could be why their brains show less glucose consumption.

“It now appears that grey matter is where “thinking” takes place, and white matter provides connections between different areas of grey matter. Some brains seem to be organized with shorter white-matter connections, which appear to allow more efficient communication, and there seem to be sex differences in the ways the part of the brain are connected. One of the effects of aging is deterioration of the white-matter connections, which reduces intelligence.”

Read this commentary (pg. 162): Norgate, S., & Richardson, K. (2007). On images from correlations. Behavioral and Brain Sciences, 30(02), 162. doi:10.1017/s0140525x07001379

“Brain damage never makes people smarter”

This is wrong:

You would think that cutting out one-half of people’s brains would kill them, or at least leave them vegetables needing care for the rest of their lives. But it does not. Consider this striking story. A boy starts having seizures at 10 years of age when his right cerebral hemisphere atrophies. By the time he is 12, the left side of his body is paralyzed. When he is 19, surgeons decide to operate and remove the right side of his brain, as it is causing gits in his intact left one. You might think this would lower his IQ or leave him severely retarded, but no. His IQ shoots up 14 points, to 142! The mystery is not so great when you realize that the operation has gotten rid of the source of his fits, which had previously hampered his intelligence. When doctors saw him 15 years later, they described him as “having obtained a university diploma . . . [and now holding] a responsible administrative position with a local authority.”

Skoyles, J. R., & Sagan, D. (2002). Up from dragons: the evolution of human intelligence. New York: McGraw-Hill (pg. 282)

“Prof. Haier wants a concerted effort: “What if a country ignored space exploration and announced its major scientific goal was to achieve the capability to increase every citizen’s g-factor [general intelligence] by a standard deviation?””

Don’t make me laugh. You need to prove that ‘g’ exists first. Glad to see some commentary on epigenetics that isn’t bashing it (it is a real phenomenon, though the scope of it in regards to health, disease and evolution remains to be discovered).

As most readers may know, I’m skeptical here and a huge contrarian. I do not believe that g is physiological and if it were then they better start defining it/talking about it differently because I’ve shown that if it were physiological then it would not mimick any known physiological process in the body. I eagerly await some good neuroscience studies on IQ that are robust, with large ns, their conclusions show the arrow of causality, and they’re not just making large sweeping claims that they found X “just because they want to” and are emotionally invested in their work. That’s my opinion about a lot of intelligence research; like everyone, they are invested in their own theories and will do whatever it takes to save face no matter the results. The recent Amy Cuddy fiasco is the perfect example of someone not giving up when it’s clear they’re incorrect.

I wish that Mr. Taylor would actually read some of the literature out there on TBI and IQ along with how people with chunks of their brains missing can have IQs in the normal range, showing evidence that most a lot of our brain mass is redundant. How can someone survive with a brain that weighs 1.5 pounds (680 gms) and not need care for the rest of his life? That, in my opinion, shows how incredible of an organ the human brain is and how plastic it is—especially in young age. People with IQs in the normal range need to be studied by neuroscientists because anomalies need explaining.

If large brains are needed for high IQs, then how do these people function in day-to-day life? Shouldn’t they be ‘as dumb as an erectus’, since they have erectus-sized brains living in the modern world? Well, the human body and brain are two amazing aspects of evolution, so even sudden brain damage and brain removal (up to half the brain) does not show deleterious effects in a lot of people. This is a clue, a clue that most of our brain mass after erectus is useless for our ‘intelligence’ and that our brains must have expanded for another reason—family structure, sociality, expertise, etc. I will cover this at length in the future.

Small Brain, Normal IQ

1650 words

Emil Kirkegaard left a short commentary on John Skoyles’ 1999 paper Human Evolution Expanded Brains to Increase Expertise Capacity, not IQin which Emil writes in his article Evolution and imperfect mediators:

If we condense the argument, it becomes a little clearer:

John Skoyles (1999) [Condensed argument from Emil; paragraph 2] Brain expansion causes problems. Thus, whatever selected for increased brain size must have offered compensating benefits. People can have below average size brains yet exhibit normal intelligence. Thus, the compensating benefit offered by large brains is unlikely to be intelligence. Why should evolution have increased brain size with its associated problems for something smaller sized brains could have without expansion?

I merely edited out the unnecessary parts. Now try substituting some other trait, say fighting ability and some mediator of it.

Muscle size increases causes problems. Thus, whatever selected for increased muscle size must have offered compensating benefits. People can have below average size muscles yet exhibit normal fighting ability. Thus, the compensating benefit offered by large muscles is unlikely to be fighting ability. Why should evolution have increased muscle size with its associated problems for something smaller sized muscles could have without increase?

See the issue? This argument works for any imperfect physical underpinning of a trait, which is to say, basically all of them. Longer legs didn’t evolve for running well for some people with short legs run well. Bigger/stronger hears didn’t evolve for better cardio, because some people smaller/weaker hearts have good cardio. Longer arms didn’t evolve for fighting because some short armed people fight well. Darker skin didn’t evolve as a protection against sun exposure for some relative light skinned people don’t get skin cancer or sunburns. Larger eyes didn’t evolve for seeing better for some people with smaller eyes see well. Bigger ears… Bigger noses… Stronger hands… …

I don’t agree. Our brains sap about 20 percent of our daily energy needs while being 2 percent of our overall body mass whereas, in other primates, their brains cost about 9 percent of their daily energy needs (Fonseca-Azevedo and Herculano-Houzel, 2012).

In regards to Emil’s counterarguments, I’ll address them one by one:

Long legs: People with longer legs were better runners and could escape from predators and chase prey. People with shorter legs were killed.

Bigger/stronger hearts: Those with a larger heart (sans cardiomegaly) could run for longer distance (remember, we are distance runners; Carrier, 1984; Skoyles and Sagan, 2002Bramble and Lieberman, 2004; Mattson, 2012) and so long legs and bigger/stronger hearts tie in with each other.

Long arms: This, again, goes back to our morphology in Africa. Long limbs are more conducive to heat dissipation (Lieberman, 2015). So those who had the right body plan for distance running could survive better during our evolutionary history.

Dark skin: A light-skinned person who spends enough time without protection in a tropical climate will develop skin cancer. (It is hypothesized that skin cancer is what caused the evolution of dark skin; Greaves, 2014, though this was contested by Jablonksi and Chaplin, 2014.)

Large eyes: Bigger eyes don’t mean better eyesight in comparison to smaller ones.

All in all, the brain size argument is 100 percent different from these arguments: large brains come with large problems. Further, there is evidence (which will be reviewed below) that people can live long, normal lives with half of their brain missing

The brain-size/IQ puzzle

The oft-repeated wisdom is that our brains evolved to such a large size so we could become more intelligent. And looking at when our brains began to increase (starting with erectus, which had to do with the advent of cooking/fire use), we can see that that’s when our modern body plan appeared. We can ascertain this by looking at Nariokotome boy, an erectus that lived about 1.6 mya.

Further, in regards to brain size, there was a man named Daniel Lyon. What was so extraordinary about this man is that, at the time of his death, had a brain that weighed 1.5 pounds (see Wilder, 1911)! Skoyles and Sagan (2002: 239) write:

Upon examination, anatomists could find no difference between it [Lyon’s brain] and other human brains apart from its size with one exception: The part of his brain attached to the brainstem, the cerebellum, was near normal size. Thus, the total size of Lyon’s cerebral hemisphere was smaller than would be suggested by a total brain weight of 1.5 lb. We do not know how bright he was—being a watchman is not particularly intellectually demanding—but he clearly was not retarded. A pound and a half brain may not be enough to manage a career as an attorney, a professor of theology, or a composer, but it was sufficient to let Lyon survive for 20 years in New York City.

Skoyles and Sagan (2002) review numerous lines of evidence of individuals with small brains/people with severe TBI living full lives, even having IQs in the average/above average range. They write (pg 238):

You would think that cutting out one-half of people’s brains would kill them, or at least leave them vegetables needing care for the rest of their lives. But it does not. Consider this striking story. A boy starts having seizures at 10 years of age when his right cerebral hemisphere atrophies. By the time he is 12, the left side of his body is paralyzed. When he is 19, surgeons decide to operate and remove the right side of his brain, as it is causing gits in his intact left one. You might think this would lower his IQ or leave him severely retarded, but no. His IQ shoots up 14 points, to 142! The mystery is not so great when you realize that the operation has gotten rid of the source of his fits, which had previously hampered his intelligence. When doctors saw him 15 years later, they described him as “having obtained a university doploma . . . [and now holding] a responsible administrative position with a local authority.” (18)

They also write about the story of an Argentinian boy who had a right hemispherectomy when he was 3-years-old who was notable for “the richness of his vocabulary and syntax” and also “attends English classes at school, in which he attains a high level of success (20; quote from Skoyles and Sagan, 2002: 238).

It is also a “medical myth that microcephaly (having a head smaller than two standard deviations (SD) below average circumference) is invariably linked to retardation.” (Skoyles and Sagan, 2002: 239).

There are some important things to be noted in regards to the study of Nariokotome boy’s skeleton and skull size. Skoyles and Sagan (2002: 240) write (emphasis mine):

So how well equipped was Homo erectus? To throw some figures at you (calculations shown in the notes), easily well enough. Of Nariokotome boy’s 673 cc of cortex, 164 cc would have been prefrontal cortex, roughly the same as half-brained people. Nariokotome boy did not need the mental competence required by cotemporary hunter-gatherers. … Compared to that of our distant ancestors, Upper Paleolithic technology is high tech. And the organizational skills used in hunts greatly improved 400,000 years ago to 20,000 years ago. These skills, in terms of our species, are recent, occurring by some estimates in less than the last 1 percent of our 2.5 million year existence as people. Before then, hunting skills would have required less brain power, as they were less mentally demanding. If you do not make detailed forward plans, then you do not need as much mental planning abilities as those who do. This suggests that the brains of Homo erectus did not arise for reasons of survival. For what they did, they could have gotten away with much smaller, Daniel Lyon-sized brains.

Lastly, I will touch on the fact that since we are running apes, that we need a narrow pelvis. As I stated above, our modern body plan came to be around 1.6 mya with the advent of erectus, which could be inferred from footprints (Steudel-Numbers, 2006Bennett et al, 2009). Now the picture is beginning to become clearer: if people with brains the size of erectus could have intelligence in the modern range, and if our modern body plans evolved 1.6 mya (which is when our brains began to really increase in size due to metabolic constraints being unlocked due to erectus’ cooking ability), then you can see that it’d be perfectly possible for modern Homo sapiens to have brains the size of erectus while still having an IQ in the normal range.

Lastly, Skoyles and Sagan (2002: 245) write (emphasis mine):

Kanzi seems to do remarkably well with a chimp-sized brain. And while we tend to link retardation with small brains, we have seen that people can live completely normal lives while missing pieces of their brains. Brain size may enhance intelligence, but it seems we can get away without 3 pounders. Kanzi shows there is much potential in even 13 oz.

So Skoyles and Sagan do concede that brain size may enhance intelligence, however, as they have argued (and as Skoyles does in his 1999 paper), it is perfectly possible to live a normal life with half a brain, as well as have an average/above average IQ (as reviewed in Skoyles, 1999). So if people with erectus-sized brains can have IQs in the normal range and live normal lives, then brains must have increased for another reason, which Skoyles has argued is expertise capacity.

Large brains are, clearly, not needed for high IQs.

(Also search for this paper: Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L. & Denckla, M. B. (1996). Brain development, gender and IQ in children: A volumetric imaging study. Brain, 119, 1763-1774. where they show that there is a plateau, and a decrease in IQ in the largest brains; see table 2. I also reviewed some studies on TBI and IQ and how even those with severe TBI can have IQs in the normal range (Bigler, 1995; Wood and Rutterford, 2006; Crowe et al, 2012). Yet more evidence that people with half of their brains missing can lead normal lives and have IQs in the modern range.)

Evidence for Natural Selection in Humans: East Asians Have Higher Frequency of CASC5 Brain Size Regulating Gene

1500 words

Brain size is one physical difference that the races differ on. East Asians have bigger brains than Europeans who have bigger brains than Africans (Beals et al, 1984; Rushton, 1997). What caused these average differences and the ultimate causes for them have been subject to huge debate. Is it drift? Natural/sexual selection? Mutation? Gene flow? Epigenetic? One reason why brains would need to be large in colder climates is due to heat retention, while in tropical climates heads need to be smaller to dissipate heat. One of the biggest criticisms of HBD is that there is no/little evidence of recent natural selection between human races. Well, that has changed.

CASC5 “performs two crucial functions during mitosis, being required for correct attachment of chromosome centromeres to the microtubule apparatus, and also essential for spindle-assembly checkpoint (SAC) signaling” (Shi et al, 2016). The gene has been found to be important in recent human evolution along with neurogenesis.

Shi et al (2016) genotyped 278 Han Chinese (174 females and 104 males with a mean age of 36) who were free of maladies or genetic defects. They had the coding sequences of CASC5 for humans, chimpanzees, gorillas, baboons, gibbons, orangutans, tarsiers, Denisovans, and Neanderthals. They downloaded genotypes from the Human Genome Project for their analysis.

They compared CASC5 among three human species: humans, Neanderthals, and Denisovans. Using chimpanzees as an outgroup, they discovered 45 human-specific mutations, 48 Neanderthal-specific mutations, and 41 Neanderthal-specific mutations. Further, when one exon region was aligned among modern humans, non-human primates and other mammalian species, 12 amino acid sites showed divergence between modern humans, Neanderthals, and Denisovans with 8 occurring in modern humans. Of the 8 sites in humans, 6 are preserved which implies that they were important in our evolutionary history.

Shi et al (2016) write:

At the population level, among the 8 modern human amino acid changes, two (H159R and G1086S) are fixed in current human populations, and the other six are polymorphic Fig. 1). Surprisingly, 5 of the 6 amino acid polymorphic sites showed deep between-population divergence in allele frequencies. East Asians possess much higher frequencies of the derived alleles at four sites (T43R-rs7177192, A113T-rs12911738, S486A-rs2412541 and G936R-rs8040502) as compared to either Europeans or Africans (Fig. 1), while E1285K-rs17747633 is relatively enriched in Europeans (46%), and rare in East Asians (10%) and Africans (3%). No between-population divergence was observed for T598 M-rs11858113 (Fig. 1).

x3x5hex

So East Asians have a much higher frequency of this derived trait. This is direct evidence for natural selection in recent human evolution in regards to the physical structure of the brain.

Since most of the amino acid polymorphic sites showed between-population divergence, they decided to analyze the three classical races using 1000 genomes. The variation between the races could be due to either genetic drift or natural selection. When they analyzed certain gene regions, they observed a signal of positive selection for East Asians but not Europeans or Africans. They further tested this selection signal using “the standardized integrated haplotype score (iHS) which is used for detecting recent positive selection with incomplete sweep (i.e. the selected allele is not yet fixed)” (Shi et al, 2016). Using this method, they discovered a few SNPs with large iHS values in Europeans (7 SNPs at 4.2 percent) and none in Africans.

They also conducted a genome-wide scan of Fst, iHS, and “XPCLR (searching for highly differentiated genomimc regions as targets of selective sweeps)” (Shi et al, 2016). Several SNPs had high Fst, iHS and XPCLR scores, which indicate that these alleles have been under positive selection in East Asians. Among the fixed amino acid sites in human populations, East Asians showed 5, Europeans showed 1, and Africans showed 0 which, the authors write, “[imply] that these amino acid changes may have functional effects” (Shi et al, 2016). Furthermore, using the HDGP, they obtained the frequency of the 6 amino acid sites in 53 populations. This analysis showed that 4 of the 6 amino acid sites are “regionally enriched in East Asia .. in line with the suggested signal of population-specific selection in this area” (Shi et al, 2016).

Then, since CASC5 is a brain size regulating gene, they looked for phenotypic effects. They recruited 167 Han Chinese (89 men, 178 women) who were free of maladies. They genotyped 11 SNPs and all of the frequencies followed Harvey-Weinberg Equilibrium (which states that allele and genotype frequencies will remain constant in a population from generation to generation in the absence of evolutionary pressures; Andrews, 2010). In the female sample, 5 regions were related to gray matter volume and four were on the amino acid polymorphic sites. Interestingly, the four alleles which showed such a stark difference between East Asians and Europeans and Africans showed more significant associations in Han Chinese females than males. Those carrying the derived alleles had larger brain volumes in comparison with those who had the ancestral alleles, implying recent natural selection in East Asia for brain size.

Shi et al (2015) also attempted two replications on this allele writing:

We further conducted a replication analysis of the five significant CAC5 SNPs in two other independent Han Chinese samples (Li et al. 2015; Xu et al. 2015). The results showed that three SNPs (rs 7177192, rs11858113 and rs8040502) remained significant in Replication-1 for total brain volume and gray matter volume (Xu et al. 2015), but no association was detected in Replication-2 (Li et al. 2015) (Table S4).

It is very plausible that the genes that have regulated brain growth in our species further aid differences in brain morphology within and between races. This effect is seen mostly in Han Chinese girls. Shi et al (2016) write in the Discussion:

If this finding is accurate and can be further verified, it suggests that that [sic] after modern humans migrated out of Africa less than 100,000 years ago, the brain size may still be subject to selection.

I do believe it is accurate. Of course, the brain size could still be subject to selection; there is no magic field shielding the brain against selection pressure. Evolution does not stop at the neck.

So Shi et al (2016) showed that there were brain genes under recent selection in East Asians. What could the cause be? There are a few:

  1. Climate: In colder climates you need a smaller body size and big brain to survive the cold to better thermoregulate. A smaller body means there is less surface area to cover, while a larger head retains heat. It, obviously, would have been advantageous for these populations to have large brains and thus get selected for them—whether by natural or sexual selection. This could also have to do with the fact that one needs bigger eyes in colder environments, which would cause an increase in the size of the brain for the larger eyes, as well as being sharper visio-spatially.
  2. Intelligence: East Asians in this study showed that they had high levels of gray matter in the skull. Further, large brains are favored by an intermediately challenging environment (Gonzalez-Forero, Faulwasser, and Lehmann, 2017).
  3. Expertise: I used Skoyle’s (1999) theory on expertise and human evolution and applied it to racial differences in brain size and relating it to the number of tools they had to use which differed based on climate. Now, of course, if one group uses more tools then, by effect, they would need more expertise with which to learn how to make those tools so large brains would be selected for expertise—especially in novel areas.
  4. Vision: Large brains mean large eyes, and people from cold climates have large eyes and large brains (Pearce and Dunbar, 2011). Decreasing light levels select for larger eye size and visual cortex size in order to “increase sensitivity and maintain acuity“. Large eyeballs mean enlarged visual cortices. Therefore, in low light, large brains and eyes get selected for so one can see better in a low light environment.

Of course, all four of the examples below could (and probably do) work in tandem. However, before jumping to conclusions I want to see more data on this and how the whole of the system interacts with these alleles and these amino acid polymorphic sites.

In sum, there is now evidence for natural selection on East Asians (and not Africans or Europeans) that favored large brains, particularly gray matter, in East Asians with considerable sexual dimorphism favoring women. Four of the genes tested (MCPH1, ASPM, CDK5RAP2, and WDR62) are regulated by estradiol and contribute to sexual dimorphism in human and non-human primates (Shi et al, 2016). Though it still needs to be tested if this holds true for CASC5.

This is some of the first evidence that I have come across for natural selection on genes that are implicated in brain evolution/structural development between and within populations. It does show the old “Rushton’s Rule of Three“, that is, Mongoloids on top, Caucasians in the middle, and Negroids on bottom, though Caucasians were significantly closer to Africans than Mongoloids in the frequency of these derived alleles. I can see a HBDer going “They must be related to IQ”, I doubt it. They don’t ‘have’ to be related to IQ. It just infers a survival advantage in low light, cold environments and therefore it gets selected for until it reaches a high frequency in that population due to its adaptive value—whether spreading by natural or sexual selection.

 

There is No ‘Marching Up the Evolutionary Tree’

2000 words

The notion that there is any ‘progress’ to evolution is something that I have rebutted countless times on this blog. My most recent entry being Marching Up the ‘Evolutionary Tree’? which was a response to Pumpkin Person’s article Marching up the evolutionary tree. Of course, people never ever change their views in a discussion (I have seen it, albeit it is rare) due, mainly to, in my opinion, ideology. People have so much time invested in their little pet theories that they cannot possibly fathom at the thought of being wrong or being led astray by shoddy hypotheses/theories that confirm their pre-existing beliefs. I will quote a few comments from Pumpkin Person’s blog where he just spews his ‘correlations with brain size and ‘splits’ on the ‘evolutionary tree” that ‘proves that evolution is progressive’, then I will touch on two papers (I will cover both in great depth in the future) that directly rebut his idiotic notion that so-called brain size increases across our evolutionary history (and even before we became humans) are due to ‘progress in evolution’

One of my co-bloggers Phil wrote:

I think you mistyped that, but i see your point. Problem, however, most of your used phylogenies were unbalanced.

To which PP replied:

Based on the definition you provided, but not based on any meaningful definition. To me, an unbalanced tree is . . .

This is literally meaningless. Keep showing that you’ve never taken a biology class in your life, it really shows.

All it is is ignorance to basic biological thinking, along with an ideology to prove his ridiculous Rushtonian notion that ‘brain size increases prove that evolution is progressive’.

PP writes:

You have yet to present ANY scientific logic, and my argument about taxonomic specificity is clearly beyond you.

Scientific logic?! Scientific logic?! Please. Berkely has a whole page on misconceptions on evolution that directly rebut his idiotic, uneducated views on evolution. It doesn’t help that his evolution education most likely comes from psychologists. Nevertheless, PP’s ‘argument’ is straight garbage. Taxonomic specificity’ is meaningless when you don’t have an understanding of basic biological concepts and evolution. (I will have much more to say on his ‘taxonomic specificity’ below.)

PP writes:

Was every tree perfect? No, but most were pretty close, and keep in mind that any flawed trees would have the effect of REDUCING the correlation between brain size/encephalization and branching, because random error is a source of statistical noise which obscures any underlying relationship. So the fact that I repeatedly found such robust correlation in spite of alleged problems with my trees, makes my conclusions stronger, not weaker.

The fact that you ‘repeatedly’ found ‘correlations’ in spite of the ‘problems’ with your trees makes your ‘conclusions’ weaker. Comparing organisms over evolutionary time and you notice a ‘trend’ in brain size. Must mean that evolution is progressive and brain size is its calling card!!

PP writes:

I’m right and all the skeptics you cite are wrong.

Said like a true idealogue.

Here is where PP’s biggest blunder comes in:

It’s not how many splits they have that I’ve been measuring, it’s how many splits occur on the tree before they branch off. Here’s a source from 2017:

Eukaryotes represent a domain of life, but within this domain there are multiple kingdoms. The most common classification creates four kingdoms in this domain: Protista, Fungi, Plantae, and Animalia.

So you needed ‘a source from 2017’ to tell you something that is literally taught on the first day of biology 101? Keep showing how uneducated you are here.

PP writes:

Nothing fallacious about a correlation between number of splits and brain size/encephalization.

Post hoc, ergo propter hoc:

Post hoc, ergo propter hoc is a Latin phrase for “after this, therefore, because of this.” The term refers to a logical fallacy that because two events occurred in succession, the former event caused the latter event.[1][2]

Magical thinking is a form of post hoc, ergo propter hoc fallacy, in which superstitions are formed based on seeing patterns in a series of coincidences. For example, “these are my lucky trousers. Sometimes good things happen to me when I wear them.”

P1: X happened before Y.
P2: (unstatedY was caused by something (that happened before Y).
C1: Therefore, X caused Y.

Here is PP’s (fallacious) logic:

P1: splits (X) happened before Y (brain size increase)
P2: (unstated) brain size increase was caused by something (that happened before brain size increaes [splits on the tree])
C1: therefore, splits caused brain size increase

Now, I know that PP will argue that ‘splits on the evolutionary tree’ denote speciation which, in turn, denotes environmental change. This is meaningless. You’re still stating that Y was caused by something (that happened before Y) and therefore inferring that X caused Y. That is the fallacy (which a lot of HBD theories rest on).

PP writes:

You don’t get it. Even statistically insignificant correlations become significant when you get them FIVE TIMES IN A ROW. If you want to believe it was all a coincidence, then fine.

Phylogenies are created from shared derived factors. Berkely is the go-to authority here on this matter. (No that’s not appeal to authority.)  Biologists collect information about a given animal and then infer the evolutionary relationship. Furthermore, PP’s logic is, again, fallacious. Berkely also has tips for tree reading, which they write:

Trees depict evolutionary relationships, not evolutionary progress. It’s easy to think that taxa that appear near one side of a phylogenetic tree are more advanced than other organisms on the tree, but this is simply not the case. First, the idea of evolutionary “advancement” is not a particularly scientific idea. There is no unbiased, universal scale for “advancement.” Second, taxa with extreme versions of traits (which might be perceived as more “advanced”) may occur on any terminal branch. The position of a terminal taxon is not an indication of how adaptive, specialized, or extreme its traits are.

He may emphatically argue (as I know he will) that he’s not doing this. But, as can be seen from his article, X is ‘less advanced’ than Y, therefore splits, brain size, correlation=progress. This is dumb.

For anyone who wants to know how (and how not to) read phylogenies, read Gregory (2008). These idotic notions that PP espouses are what Freshman in college believe due to ‘intuitiveness’ about evolution. It’s so rampant that biologists have writen numerous papers on the matter. But some guy with a blog and no science background (and an ideology to hammer) must know more than people who do this for a living (educate people on phylogenies).

On Phil’s response to see the Deacon paper that I will discuss below, PP writes:

That’s not a rebuttal.

Yes it is, as I will show shortly.


The first paper I will discuss is Deacon’s (1990) paper Fallacies of Progression in Theories of Brain-Size Evolution. This is a meaty paper with a ton of great ideas about phylogenies, along with numerous fallacies that people go to when reading trees (my favorite being the Numerology fallacy, which PP uses, see below).

Deacon argues that since people fail to analyze allometry, this anatomists have mistaken artifacts for evolutionary trends. He also argues that many structural’brain size increases’ from ‘primitive to advanced forms’ (take note here, because this is what PP did and this is what discredits his idiotic ideology) are the result of allometric processes.

f1-large

Source: Evolution of consciousness: Phylogeny, ontogeny, and emergence from general anesthesia Mashour and Alkire (2013)

This paper (and picture) show it all. This notion of scala naturae (which Rushton (2004) attempted to revive with r/K selection theory has been rebutted by me) was first proposed by Aristotle. We now know how the brain structure evolved, so the old ‘simple scala naturae‘ is, obviously, out of date in the study of brain evolution.

This paper is pretty long and I don’t have time to discuss all of it so I will just provide one quote that disproves PP’s ‘study’:

Whenever a method is discovered for simplifying the representation of a complex or apparently nonsystematic numerical relationship, the method of simplification itself provides new insight into the phenomenon under study. But reduction of a complex relationship to a simple statistic makes it far easier to find spurious relationships with other simple statistics. Numerology fallacies are apparent correlations that turn out to be artifacts of numerical oversimplification. Numerology fallacies in science, like their mystical counterparts, are likely to be committed when meaning is ascribed to some statistic merely by virtue of its numeric similarity to some other statistic, without supportive evidence from the empirical system that is being described.

Deacon also writes in another 1990 article titled Commentary on Ilya I. Glezer, Myron So Jacobs, and Peter J Morgane (1988) Implications of the “initial brain’9 concept for brain evolution in Cetacea:

The study of brain evolution is one of the last refuges for theories of progressive evolution in biology, but in this field its influence is still pervasive. To a great extent the apparent “progress” of mammalian brain evolution vanishes when the effects of brain size and functional specialization are taken into account.

(It’s worth noting that in the author’s response to Deacon, he did not have any qualms about ‘progressive brain-size’.)

In regards to PP’s final ‘correlation’ on human races and brain-size, this is a perfect quote from McShea (1994: 1761):

If such a trend [increase in brain size leading to ‘intelligence’] in primates exists and it is driven, that is, if the trend is a direct result of concerted forces acting on most lineages across the intelligence spectrum, then the inference is justified. But if it is passive, that is, forces act only on lineages at the low-intelligence end, then most lineages will have no increasing tendency. In that case, most primate species—especially those out on the right tail of the distribution like ours—would be just as likely to lose intelligence as to gain it in subsequent evolution (if they change at all).

The ‘trend’ is passive. Homo floresiensis is the best example. We are just as likely to lose our ‘intellect’ and our ‘big brains’ as we are to ‘get more intelligent’ and ‘smaller brains’. The fact of the matter is this: environment dictates brain size/whatever other traits an organism has. Imagine a future environment that is a barren wasteland. Kilocalories are scarce; do you think that humans would keep their big brains—which are two percent of their body weight accounting for a whopping 25 percent of total daily energy needs—without enough high-quality energy? When brain size supposedly began to increase in our taxa is when erectus learned to control fire and cook meat (Hlublik et al, 2017).

All in all, there is no ‘progress’ to evolution and, as Deacon argues, so-called brain-size increases across evolutionary time disappear after adjustments for body size and functional specialties are taken into account. However, for the idealogue who looks for everything they can to push their ideology/worldview, things like this are never enough. “No, that wasn’t a rebuttal! YOU’RE WRONG!!” Those are not scientific arguments. If one believes in ‘evolutionary progress’ and that brain-size increases are the proof in the pudding that evolution is ‘progressive’ (re has a ‘direction’), then they must rebut Deacon’s arguments on allometry and his fallacies in his 1990 paper. Stop equating evolution with ‘progress’. Though, I can’t fault laymen for believing that. I can, however, fault someone who supposedly enjoys the study of evolution. You’re wrong. The people you cite (who are out of their field of expertise) are wrong.

Evolution is an amazing process. To equate it with ‘progress’ does not allow one to appreciate the beauty of the process. Evolution does carry baggage with it, and if I weren’t so used to the term I would use Descent by Modification (DbM, which is what Darwin used). Nevertheless, progressionists will hide out in whatever safehold they can to attempt to push their idealogy that is not based on science.

(Also read Rethinking Mammalian Brain Evolution by Terrence Deacon. I go more in depth on these three articles in the future.)

 

Dinosaurs, Brains, and ‘Progressive Evolution’

1800 words

Would dinosaurs have reached human-like intellect had the K-T extinction (an asteroid impact near the Yucatan peninsula) not occurred? One researcher believes so, and he believes that a dinosaur called the troodon would have evolved into a bipedal, human-like being. This is, of course, the old progressive evolution shtick. This assumes that a man-like being is an inevitability, and that sentience is a forgone conclusion.

This belief largely comes from Rushton’s citation of one Dale Russel, the discoverer of the dinosaur the troodon:

Paleontologist Dale Russell (1983,1989) quantified increasing neurological complexity through 700 million years of Earth history in invertebrates and vertebrates alike. The trend was increasing encephalization among the dinosaurs that existed for 140 million years and vanished 65 million years ago. Russell (1989) proposed that if they had not gone extinct, dinosaurs would have progressed to a large-brained, bipedal descendent. For living mammals he set the mean encephalization, the ratio of brain size to body size, at 1.00, and calculated that 65 million years ago it was only about 0.30. Encephalization quotients for living molluscs vary between 0.043 and 0.31, and for living insects between 0.008 and 0.045 but in these groups the less encephalized living species resemble forms that appeared relatively early in the geologic record, and the more encephalized species resemble those that appeared later. (Rushton, 1997: 294)

This argument is simple to rebut. What is being described is complexity. The simplest possible organism are bacteria, which reside at the left wall of complexity. The left wall “induces right-skewed distributions”, whereas the right wall induces “left-skewed distributions” (Gould, 1996: 55). Knowing this, biological complexity is a forgone conclusion, which exists at the extreme end of the right tail curve. I’ve covered this in my article Complexity, Walls, 0.400 Hitting and Evolutionary “Progress”

Talking about what Troodons may have looked like (highly, highly, doubtful. The anthropometric bias was pretty strong) is a waste of time. I’ve stated this a few times and I’ll state it yet again: without our primate body plan, our brains are pretty much useless. Our body needs our brain; our brain needs our body. Troodons would have stayed quadrupedal; they wouldn’t have gone bipedal.

He claims that some dinosaurs would have eventually reached an EQ of humans—specifically the troodon. They had EQs about 6 times higher than the average dinosaur, had fingers to grasp, had small teeth, ate meat, and appeared to be social. Dale Russel claims that had the K-T extinction not occurred, the troodon would look similar to us with a brain size around 1100 cc (the size of erectus before he went extinct). This is what he believes the dinosauroid troodon would look like had they not died out 65 mya:

dinosauroid

When interviewed about the dinosauroid he imagined, he stated:

The “dinosauroid” was a thought experiment, based on an observable, general trend toward larger relative brain size in terrestrial vertebrates through geologic time, and the energetic efficiency of an upright posture in slow-moving, bipedal animals. It seems to me that such speculation remains acceptable, particularly if directed toward non-anthropoid anatomical configurations. However, I very nearly decided not to publish the exercise because of the damaging effects it might have had on the credibility of my work in general. Most people remained polite, although there were hostile reactions from those with “ultra-quantitative” and “ultra-intuitive” world views.

Why does it look so human? Why does he assume that the ‘ideal body plan’ is what we have? It seems to be extremely biased towards a humanoid morphology, just as other reconstructions are biased towards what we think about certain areas today and how the people may have looked in our evolutionary past. Anthropocentric bias permeates deep in evolutionary thinking, this is one such example.

Thinking of this thought experiment of a possible ‘bipedal dinosauroid’ we need to be realistic in terms of thinking of its anatomy and morphology.

Let’s accept Russel’s contention as true; that troodontids or other ‘highly encephalized species’ reached a human EQ, as he notes, of 9.4, with troodontids at .34 (the highest), archaeopteryx at .32, triconodonts (early extinct mammal of the cretaceous) with a .29 EQ, and the diademodon with an EQ of .20 (Russel, 1983). Russel found that the troodontids had EQs 6 times higher than the average dinosaur, so from here, he extrapolated that the troodon would have had a brain our size. However, Stephen Jay Gould argued the opposite in Wonderful Life writing:

If mammals had arisen late and helped to drive dinosaurs to their doom, then we could legitimately propose a scenario of expected progress. But dinosaurs remained dominant and probably became extinct only as a quirky result of the most unpredictable of all events—a mass dying triggered by extraterrestrial impact. If dinosaurs had not died in this event, they would probably still dominate the large-bodied vertebrates, as they had for so long with such conspicuous success, and mammals would still be small creatures in the interstices of their world. This situation prevailed for one hundred million years, why not sixty million more? Since dinosaurs were not moving towards markedly larger brains, and since such a prospect may lay outside the capability of reptilian design (Jerison, 1973; Hopson, 1977), we must assume that consciousness would not have evolved on our planet if a cosmic catastrophe had not claimed the dinosaurs as victims. In an entirely literal sense, we owe our existence, as large reasoning mammals, to our lucky stars. (Gould, 1989: 318)

If a large brain was probably outside of reptilian design, then a dinosaur—or a descendant (troodon included)—would have never reached human-like intelligence. However, some people may say that dinosaur descendants may have evolved brains our size since birds have brains that lie outside of reptilian design (supposedly).

However, one of the most famous fossils ever found, archaeopteryx, was within reptilian design, having feathers and along with wings which would have been used for gliding (whether or not they flew is debated). Birds descend from therapods. Anchiornis, and other older species are thought to be the first birds. Most of birds’ traits, such as bipedal posture, hinged ankles, hollow bones and S-shaped neck in birds are derived features from their ancestors.

If we didn’t exist, then if any organism were to come close to our intelligence, I would bet that some corvids would, seeing as they have a higher packing density and interconnections compared to the “layered mammalian brain” (Olkowicz et al, 2016). Nick Lane, biochemist and author of the book The Vital Question: Evolution and the Origins of Complex Life believes a type of intelligent ocotopi may have evolved, writing:

Wind back the clock to Cambrian times, half a billion years ago, when mammals first exploded into the fossil record, and let it play forwards again. Would that parallel be similar to our own? Perhaps the hills would be crawling with giant terrestrial octopuses. (Lane, 2015: 21)

We exist because we are primates. Our brains are scaled-up primate brains (Herculano-Houzel, 2009). Our primate morphology—along with our diet, sociality, and culture—is also why we came to take over the world. Our body plan—which, as far as we know, only evolved once—is why we have the ability to manipulate our environment and use our superior intelligence—which is due to the number of neurons in our cerebral cortex, the highest in the animal kingdom, 16 billion in all (Herculano-Houzel, 2009). Why postulate that a dinosaur could have looked even anywhere close to us?

This is also ignoring the fact that decimation and diversification also ‘decide the fates’ so to speak, of the species on earth. Survival during an extinction event is strongly predicated by chance (and size). The smaller an organism is, the more likely it will survive an extinction event. Who’s to say that the troodon doesn’t go extinct due to an act of contingency, say, 50 mya if the K-T extinction never occurred?

In conclusion, the supposed ‘trend’ in brain size evolution is just random fluctuations—inevitabilities since life began at the left wall of complexity. Gould wrote about a drunkard’s walk in his book Full House (Gould, 1996) in which he illustrates an example of a drunkard walking away from a bar with the bar wall being the left wall of complexity and the gutter being the right wall. The gutter will always be reached; and if he hits the wall, he will lean against the wall “until a subsequent stagger propels him in the other direction. In other words, only one direction of movement remains open for continuous advance—toward the gutter” (Gould, 1996: 150).

I bring up this old example to illustrate but one salient point: In a system of linear motion structurally constrained by a wall at one end, random movement, with no preferred directionality whatever, will inevitably propel the average position away from a starting point at the wall. The drunkard falls into the gutter every time, but his motion includes no trend whatever toward this form of perdition. Similarly, some average or extreme measure of life might move in a particular direction even if no evolutionary advantage, and no inherent trend, favor that pathway (Gould, 1996: 151).

We humans are lucky we are here. Contingencies of ‘just history’ are why we are here, and if we were not here—if the K-T extinction never occurred—and the troodon or another dinosaur species survived to the present day, they would not have reached our ‘level’ of intelligence. To believe so is to believe in teleological evolution—which certainly is not true. Anthropometric bias runs deep in evolutionary biology and paleontology. People assume that since we are—according to some—the ‘pinnacle’ of evolution, that us, or something like us, would eventually have evolved.

Any ‘trends’ can be explained as life moving away from the left wall of complexity, with the left wall—the mode of life, the modal bacter-–being unchanged. We are at the extreme tail of the distribution of complexity while bacteria are at the left wall. Complex life was inevitable since bacteria, the most simple life, began at the left wall. And so, these ‘trends’ in brain size are just that, increasing complexity, not any type of ‘progressive evolution’. Evolution just happens, natural selection occurs based on the local environment, not any inherent or intrinsic ‘progress’.

References

Gould, S. J. (1989). Wonderful life: the burgess Shale and the nature of history. New York: Norton.

Gould, S. J. (1996). Full house: The Spread of Excellence from Plato to Darwin. New York: Harmony Books.

Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up primate brainFrontiers in Human Neuroscience,3. doi:10.3389/neuro.09.031.2009

Lane, N. (2015). The vital question: energy, evolution, and the origins of complex life. New York: W.W. Norton & Company.

Olkowicz, S., Kocourek, M., Lučan, R. K., Porteš, M., Fitch, W. T., Herculano-Houzel, S., & Němec, P. (2016). Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of Sciences,113(26), 7255-7260. doi:10.1073/pnas.1517131113

Rushton J P (1997). Race, Evolution, and Behavior. A Life History Perspective (Transaction, New Brunswick, London).

Russell, D. A. (1983). Exponential evolution: Implications for intelligent extraterrestrial life. Advances in Space Research,3(9), 95-103. doi:10.1016/0273-1177(83)90045-5

Traumatic Brain Injury and IQ

1900 words

What is the relationship between traumatic brain injury (TBI) and IQ? Does IQ decrease? Stay the same? Increase? A few studies have looked at the relationship between TBI and IQ, and the results may be quite surprising to some. Tonight I will look through a few studies and see what the relationship is between TBI and IQ—does IQ decrease substantially or is there only a small decrease? Does it decrease for all subtests or only some?

TBI and IQ

In a sample of 72 people with TBI who had significant brain injuries had an average IQ of 90 (study 1; Bigler, 1995). Bigler also says that whatever correlation exists between brain size and IQ “does not persist post injury” (pg 387). This finding has large implications: can there be a minimal hit to IQ depending on age/severity of injury/brain size/education level?

As will be seen when I review another study on IQ and brain injury, every individual in the cohort in Bigler (1995) was tested after 42 days of brain injury. This does matter, as I will get into below.

Table 1 in study 1 shows that whatever positive relationship between IQ and brain size that is there before injury does not persist after injury (Bigler, 1995: 387). Study 1 showed that, even with mild-to-severe brain damage, there was little change in measured IQ—largely because the correlation between brain size and IQ is .51 at the high end (which I will use—the true correlation is between .24 [Pietschnig et al, 2015] to .4 [Rushton and Ankney, 2009]), this means that if the correlation were to be that high, brain size would only explain 25 percent of the variation in IQ (Skoyles, 1999). That leaves a lot of room for other reasons for differences in brain size and IQ in individuals and groups.

In study 2 (Bigler, 1995: 389-391), he looked into whether or not there were differences in IQ between high and low brain volume people (95 men). Results summed in table 3 (pg 390). Those with low brain volume (1185), aged 28, had an IQ of 82.61 while those with high brain volume (1584), aged 34 had an IQ of 92 (both cohorts had similar education). Bigler showed in study 1 IQ was maintained post injury, so we can say that this was their IQ preinjury.

In table 2, Bigler (1995) compares IQs and brain volumes of mild-to-moderate and moderate-to-severe individuals with TBI. Brain volume in the moderate-to-severe group was 1289.2 whereas for the mild-to-moderate TBI-suffering individuals had a mean brain volume of 1332.9. Amazingly, both groups had IQ scores in the normal range (90.0 for moderate-to-severe TBI and 90.7 for individuals suffering from mild-to-moderate TBI. In study 3, Bigler (1995) shows that trauma-induced atrophic changes in the brain aren’t related to IQ postinjury, nor to the amount of focal lesion volume.

Nevertheless, Bigler (1995) shows that those with bigger brains had less of a cognitive hit after TBI than those with smaller brains. PumpkinPerson pointed me to a study that shows that TBI stretches far back into our evolutionary history, with TBI seen in australopithecine fossils along with erectus fossils found throughout the world. This implies that TBI was a driver for brain size (Shivley et al, 2012); if the brain is bigger, then if/when TBI is acquired, the cognitive hit will be lessened (Stern, 2002). This is a great theory for explaining why we have large brains despite the negatives that come with them—if we were to acquire TBI in our evolutionary past, then the hit to our cognition would not be too great, and so we could still pass our genes to the next generation.

The fact that changes in IQ are minimal when brain damage is acquired shows that brain size isn’t as important as some brain-size-fetishists would like you to believe. Though, preinjury (PI) IQ was not tested, I have one study where it was.

Wood and Rutterford (2006) showed results similar to Bigler (1995)—minimal change to IQ occurs after TBI. The whole cohort pre-injury (PI) had a 99.79 IQ. T1 (early measure) IQ for the cohort was 90.96 while T2 (late measure) IQ for the cohort was 92.37. For people with greater than 11th-grade education (n=30), IQ decreased from 106.57 PI to 95.19 in T1 to 100.17 in T2. For people with less than an 11th-grade education (n=44), IQ PI was 95.16 and decreased to 86.99 in T1 and increased to 87.96 in T2. Male (n=51) and female (n=23) were similar, with male PI IQ being 99.04 to women’s 101.44 with a 90.13 IQ in T1 for men with a 90.72 IQ in T1 for women. In T2 for men it was 92.94 and for women, it was 92.83. So this cohort shows the same trends as Bigler (1995).

The most marked difference in subtests post-injury was in vocabulary (see table 3) with similarities staying the same, and digit symbol, and block design increasing between T1 and T2. Neither group differed between T1 and T2. The only significant association in performance change over time was years of education. Less educated people were at greater risk for cognitive decline (see table 2).

The difference for PI IQ after T2 for less educated people was 7.2 whereas for more educated people it was 6.4. Though more educated people gained back more IQ points between T1 and T2 (4.98 points) compared to less educated people (.97 IQ points). And: “The participants in our study represent a subgroup of patients with severe head injury reported in a larger study assessing long‐term psychosocial outcome.

Bigler (1995) didn’t have PI IQ, but Wood and Rutterford (2006) did, and from T1 to T2 (Bigler 1995 tested what would be equivalent to T1 in the Wood and Rutterford 2006 study), IQ hardly increased for those with lower education (.97 points) but substantially increased for those with higher education (4.98 points) with there being a similar difference between PI IQ and T2 IQ for both groups.

Brain-derived neurotrophic protective factor (BDNF) also promotes survival and synaptic plasticity in the human brain (Barbey et al, 2014). They genotyped 156 Vietnam War soldiers with frontal lobe lesion and “focal penetrating head injuries” for the BDNF polymorphism. Though they did find differences in the groups with and without the BDNF polymorphism, writing that there were “substantial average differences between these groups in general intelligence (≈ half a standard deviation or 8 IQ points), verbal comprehension (6 IQ points), perceptual organization (6 IQ points), working memory (8 IQ points), and processing speed (8 IQ points) after TBI” (Barbey et al, 2014). This supports the hypothesis that BDNF is protective against TBI; and since BDNF was important in our evolutionary history which is secreted by the brain while endurance running (Raichlen and Polk, 2012), this could have also been another protective factor against hits to cognition that were acquired, say, during hunts or fights.

Nevertheless, one study found in a sample of 181 children Crowe et al (2012) found that children with mild-to-moderate TBI had IQ scores in the average range, whereas children with severe TBI had IQ scores in the low average range (80 to 90; table 3).

Infants with mild TBI had IQ scores of 99.9 (n=20) whereas infants with moderate TBI has IQs of 98.0 (n=23) and infants with severe TBI had IQs of 90.7 (n=7); preschoolers with mild TBI had IQ scores of 103.8 (n=11), whereas preschoolers with moderate TBI had IQ scores of 100.1 (n=19) and preschoolers with severe TBI had IQ scores of 85.8 (n=13); middle schoolers with mild TBI had IQ scores of 93.9 (n=10), whereas middle schoolers with moderate TBI had IQ scores of 93.5 (n=21), and middle schoolers with severe TBI had IQ scores of 86.1 (n=14); finally, children with mild TBI in late childhood had a mean FSIQ of 107.3 (n=17), while children with moderate TBI had IQs of 99.5 in late childhood (n=15), and children with severe TBI in late childhood had FSIQs of 94.7 (Crowe et al, 2012; table 3). This shows that age of acquisition and severity influence IQ scores (along with their subtests), and that brain maturity matters for maintaining average intelligence post-TBI. Königs et al (2016) also show the same trend; the outlook is better for children with mild TBI, while children faired far worse with severe TBI compared to mild when compared to adults (also seen in Crowe et al, 2012).

People who got into motor vehicle accidents suffered a loss of 14 IQ points (n=33) after being tested 20 months postinjury (Parker and Rosenblum, 1996). The WAIS-IV Technical and Interpretive Manual also shows a similar loss of 16 points (pg 111-112), however, the 22 subjects were tested within 6 to 18 months within acquiring their TBI, with no indication of whether or not a follow-up was done. IQ will recover postinjury, but education, brain size, age, and severity all are factors that contribute to how many IQ points will be gained. However, adults who suffer mild, moderate, and severe TBIs have IQs in the normal range. TBI severity also had a stronger effect on children aged 2 to 7 years of age at injury, with white matter volume and results on the Glasgow Coma Scale (which is used to assess consciousness after a TBI) were related to the severity of the injury (Levin, 2012).

Conclusion

TBI can occur with a minimal hit to IQ (Bigler, 1995; Wood and Rutterford, 2006; Crowe et al, 2012). IQs can still be in the average range at a wide range of ages/severities, however the older one is when they suffer a TBI, the more likely it is that they will incur little to no loss in IQ (depending on the severity, and even then they are still in the average range). It is interesting to note that TBI may have been a selective factor in our brain evolution over the past 3 million years from australopithecines to erectus to Neanderthals to us. However, the fact that people with severe TBI can have IQ scores in the normal range shows that the brain size/IQ correlation isn’t all it’s cracked up to be.

References

Barbey AK, Colom R, Paul E, Forbes C, Krueger F, Goldman D, et al. (2014) Preservation of General Intelligence following Traumatic Brain Injury: Contributions of the Met66 Brain-Derived Neurotrophic Factor. PLoS ONE 9(2): e88733. https://doi.org/10.1371/journal.pone.0088733

Bigler, E. D. (1995). Brain morphology and intelligence. Developmental Neuropsychology,11(4), 377-403. doi:10.1080/87565649509540628

Crowe, L. M., Catroppa, C., Babl, F. E., Rosenfeld, J. V., & Anderson, V. (2012). Timing of Traumatic Brain Injury in Childhood and Intellectual Outcome. Journal of Pediatric Psychology,37(7), 745-754. doi:10.1093/jpepsy/jss070

Green, R. E., Melo, B., Christensen, B., Ngo, L., Monette, G., & Bradbury, C. (2008). Measuring premorbid IQ in traumatic brain injury: An examination of the validity of the Wechsler Test of Adult Reading (WTAR). Journal of Clinical and Experimental Neuropsychology,30(2), 163-172. doi:10.1080/13803390701300524

Königs, M., Engenhorst, P. J., & Oosterlaan, J. (2016). Intelligence after traumatic brain injury: meta-analysis of outcomes and prognosis. European Journal of Neurology,23(1), 21-29. doi:10.1111/ene.12719

Levin, H. S. (2012). Long-term Intellectual Outcome of Traumatic Brain Injury in Children: Limits to Neuroplasticity of the Young Brain? Pediatrics, 129(2), e494–e495. http://doi.org/10.1542/peds.2011-3403

Parker, R. S., & Rosenblum, A. (1996). IQ loss and emotional dysfunctions after mild head injury incurred in a motor vehicle accident. Journal of Clinical Psychology,52(1), 32-43. doi:10.1002/(sici)1097-4679(199601)52:1<32::aid-jclp5>3.3.co;2-1

Pietschnig, J., Penke, L., Wicherts, J. M., Zeiler, M., & Voracek, M. (n.d.). Meta-Analysis of Associations Between Human Brain Volume And Intelligence Differences: How Strong Are They and What Do They Mean? SSRN Electronic Journal. doi:10.2139/ssrn.2512128

Raichlen, D. A., & Polk, J. D. (2012). Linking brains and brawn: exercise and the evolution of human neurobiology. Proceedings of the Royal Society B: Biological Sciences,280(1750), 20122250-20122250. doi:10.1098/rspb.2012.2250

Rushton, J. P., & Ankney, C. D. (2009). Whole Brain Size and General Mental Ability: A Review. The International Journal of Neuroscience, 119(5), 692–732. http://doi.org/10.1080/00207450802325843

Shively, S., Scher, A. I., Perl, D. P., & Diaz-Arrastia, R. (2012). Dementia Resulting From Traumatic Brain Injury: What Is the Pathology? Archives of Neurology, 69(10), 1245–1251. http://doi.org/10.1001/archneurol.2011.3747

Skoyles R. J. (1999) HUMAN EVOLUTION EXPANDED BRAINS TO INCREASE EXPERTISE CAPACITY, NOT IQ. Psycoloquy: 10(002) brain expertise

Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society,8(03), 448-460. doi:10.1017/s1355617702813248

Wood, R. L., & Rutterford, N. A. (2006). Long‐term effect of head trauma on intellectual abilities: a 16‐year outcome study. Journal of Neurology, Neurosurgery, and Psychiatry, 77(10), 1180–1184. http://doi.org/10.1136/jnnp.2006.091553

Our Vampiric Brains

1100 words

Much has been written in the scientific literature on our brain size increase, which has doubled in the timespan of about 3 million years. It is assumed that our brains became bigger so we could become smarter. However, recent data shows that the amount of blood our brains use dramatically increased over the course of human evolution—the amount of blood our brains use increased some 600 percent over the course of human evolution, substantially more than our brain size increase (350 percent).

Seymour, Bosiocic, and Snelling (2016) showed that while there was a 3.5-fold increase in brain size while there was a 6-fold increase in total cerebral blood flow rate. This is due to increased interneuron connectivity, synaptic activity and cognitive function which all depend on the cerebral metabolic rate. This is yet another reason why cooking was so important during our brain evolution. If the brain has a higher metabolic rate, only a high-quality diet will allow it to function. This can only occur if and only if there is a high-quality diet in the first place.

The metabolic intensity of cerebral tissue in our lineage could only be satisfied by a high-quality cooked diet. Clearly, the evolution of the human brain most always goes back to nutrition and the quality of the human diet. Without erectus’ control of fire around 1.5 mya, our brains wouldn’t have been able to grow this big, nor would we have the cerebral blood flow we eventually had. The below picture is figure 1 from the paper. The left slide is Australopithecus Afarensis, the middle is a Neanderthal, and the right is archaic Homo Sapiens.

f1-large

They measured the lumen radius of the internal carotid arteries and were able to deduce that there were large changes in cerebral blood flow in hominin evolution due to the increasing size of the ICAs. Arterial size, blood flow rate and metabolic rate are tightly related. So if there are bigger ICAs, then that hominin had more blood flow to feed a bigger brain. This is clear evidence that as our brain size increased that we needed more blood to feed our growing brain.

Kilroy et al (2013) hypothesize that due to widespread anatomical differences in the anterior cingulate cortex (ACC), PFC and insula and subcortical cortices, those regions must be a “central node of the brain’s network underlying individual differences in intellectual development throughout childhood and adolescence.” Cerebral blood flow in the subgenual/ACC correlates the highest with IQ. They also showed that it’s possible to delineate “where CBF is modulated by IQ.” More blood flow in these regions means a higher IQ. Since the ICAs grew larger over the course of hominin brain evolution to increase intelligence, it’s no surprise that more blood flow to certain parts of the brain is related to higher intelligence in children and adolescents.

Even CBF at rest is correlated with higher intelligence and creativity (Takeuchi et al, 2011). They showed that gray and white matter in the brain is correlated with CBF at rest and significantly and positively with psychometric intelligence. Further, the Raven’s Advanced Progressive Matrices (RAPM) and scores on the creativity test that were administered to the cohort correlated positively with white matter and cerebral blood flow. They also noticed that there was an association between negative mood and increased cerebral blood flow. Grey and white matter CBF at rest were both correlated with the RAPM and the creativity test administered. This is yet more evidence that blood flow to certain parts of the brain dictates intelligence (and most likely individual differences in intelligence as well).

The more vampiric a brain is (especially in certain regions), the higher one’s intelligence will be, on average. By looking back at the fossil skulls of our hominin ancestors and the radius of the ICA, we can infer that as hominin evolution ‘progressed’ through time, the ICA radius increased which meant increased blood flow to the brain. This is directly related to brain metabolism and could only be afforded with a high-quality diet which started with the advent of tool-making and the use of fire to cook by erectus. Cerebral blood flood in the anterior cingulate cortex is significantly and positively correlated with IQ. CBF at rest is also correlated with IQ and certain regions of the brain. This shows that a brain with a higher metabolic rate will be, on average, more intelligent than a brain that has a lower one. The current data on intelligence and CBF points to increased blood flow in certain parts of the brain is related to higher levels of intelligence. This does make sense, as our blood flow to the brain increased by 600 percent over the course of human evolution. So, in a way, we can say that along with our brain size increasing for expertise capacity (which was most definitely needed over the course of hominin evolution) (Skoyles, 2009) along with more cerebral blood flow due to larger arteries and a higher metabolic rate.

This does make sense, as our blood flow to the brain increased by 600 percent over the course of human evolution. So, in a way, we can say that along with our brain size increasing for expertise capacity (which was most definitely needed over the course of hominin evolution) (Skoyles, 2009) along with the need for more blood to the brain to increase intelligence (as blood will also shuttle oxygen to the brain). This is yet another reason why our not-so-special brains are remarkable compared to the rest of the animal kingdom—the one variable that gives us our cognitive superiority over other animals is the ability to cook and use fire. A lot of our physiologic, anatomic and brain evolution can be explained simply as: no cooking, fire, and meat, no big brains (and as a consequence, everything you see around you today would not be here), and the only thing that can drive such a metabolically demanding brain is cooking and eating high-quality foods. The outstanding number of neurons crowded into our cerebral cortex along with much blood our vampiric brain guzzles explains our cognitive superiority over other animals.

References

Kilroy, E., Yan, L., Wang, D. J., Dapretto, M., Mendez, M. F., Liu, C. Y., & Kim, Y. C. (2011). Relationships between Cerebral Blood Flow and IQ in Typically Developing Children and Adolescents. Journal of Cognitive Science,12(2), 151-170. doi:10.17791/jcs.2011.12.2.151

Seymour, R. S., Bosiocic, V., & Snelling, E. P. (2016). Fossil skulls reveal that blood flow rate to the brain increased faster than brain volume during human evolution. Royal Society Open Science,3(8), 160305. doi:10.1098/rsos.160305

Dr. John R. Skoyles (1999) HUMAN EVOLUTION EXPANDED BRAINS TO INCREASE EXPERTISE CAPACITY, NOT IQ. Psycoloquy: 10(002)

Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2011). Cerebral Blood Flow during Rest Associates with General Intelligence and Creativity. PLoS ONE,6(9). doi:10.1371/journal.pone.0025532

Neurons By Race

1100 words

With all of my recent articles on neurons and brain size, I’m now asking the following question: do neurons differ by race? The races of man differ on most all other variables, why not this one?

As we would have it, there are racial differences in total brain neurons.In 1970, an anti-hereditarian (Tobias) estimated the number of “excess neurons” available to different populations for processing bodily information, which Rushton (1988; 1997: 114) averaged to find: 8,550 for blacks, 8,660 for whites and 8,900 for Asians (in millions of excess neurons). A difference of 100-200 million neurons would be enough to explain away racial differences in achievement, for one. Two, these differences could also explain differences in intelligence. Rushton (1997: 133) writes:

This means that on this estimate, Mongoloids, who average 1,364 cm3 have 13.767 billion cortical neurons (13.767 x 109 ). Caucasoids who average 1,347 cm3 have 13.665 billion such neurons, 102 million less than Mongoloids. Negroids who average 1,267 cm3 , have 13.185 billion cerebral neurons, 582 million less than Mongoloids and 480 million less than Caucasoids.

Of course, Rushton’s citation of Jerison, I will leave alone now that we know that encephilazation quotient has problems. Rushton (1997: 133) writes:

The half-billion neuron difference between Mongoloids and Negroids are probably all “excess neurons” because, as mentioned, Mongoloids are often shorter in height and lighter in weight than Negroids. The Mongoloid-Negroid difference in brain size across so many estimation procedures is striking

Of course, small differences in brain size would translate to differences differences neuronal count (in the hundreds of millions), which would then affect intelligence.

Moreover, since whites have a greater volume in their prefrontal cortex (Vint, 1934). Using Herculano-Houzel’s favorite definition for intelligence, from MIT physicist Alex Wissner-Gross:

The ability to plan for the future, a significant function of prefrontal regions of the cortex, may be key indeed. According to the best definition I have come across so far, put forward by MIT physicist Alex Wissner-Gross, intelligence is the ability to make decisions that maximize future freedom of action—that is, decisions that keep most doors open for the future. (Herculano-Houzel, 2016: 122-123)

You can see the difference in behavior and action in the races; how one race has the ability to make decisions to maximize future ability of action—and those peoples with a smaller prefrontal cortex won’t have this ability (or it will be greatly hampered due to its small size and amount of neurons it has).

With a smaller, less developed frontal lobe and less overall neurons in it than a brain belonging to a European or Asian, this may then account for overall racial differences in intelligence. The few hundred million difference in neurons may be the missing piece to the puzzle here.Neurons transmit information to other nerves and muscle cells. Neurons have cell bodies, axons and dendrites. The more neurons (that’s also packed into a smaller brain, neuron packing density) in the brain, the better connectivity you have between different areas of the brain, allowing for fast reaction times (Asians beat whites who beat blacks, Rushton and Jensen, 2005: 240).

Remember how I said that the brain uses a certain amount of watts; well I’d assume that the different races would use differing amount of power for their brain due to differing number of neurons in them. Their brain is not as metabolically expensive. Larger brains are more intelligent than smaller brains ONLY BECAUSE there is a higher chance for there to be more neurons in the larger brain than the smaller one. With the average cranial capacity (blacks: 1267 cc, 13,185 million neurons; whites: 1347 cc, 13,665 million neurons, and Asians: 1,364, 13,767 million neurons). (Rushton and Jensen, 2005: 265, table 3) So as you can see, these differences are enough to account for racial differences in achievement.

A bigger brain would mean, more likely, more neurons which would then be able to power the brain and the body more efficiently. The more neurons one has, the more likely it it that they are intelligent as they have more neuronal pathways. The average cranial capcities of the races show that there are neuronal differences between them, which these neuronal differences then are the cause for racial differences, with the brain size itself being only a proxy, not an actual indicator of intelligence. The brain size doesn’t matter as much as the amount of neurons in the brain.

A difference in the brain of 100 grams is enough to account for 550 million cortical neurons (!!) (Jensen, 1998b: 438). But that ignores sex differences and neuronal density. However, I’d assume that there will be at least small differences in neuron count, especially from Rushton’s data from Race, Evolution and Behavior. Jensen (1998) also writes on page 439:

I have not found any investigation of racial differences in neuron density that, as in the case of sex differences, would offset the racial difference in brain weight or volume.

So neuronal density by brain weight is a great proxy.

Racial differences in intelligence don’t come down to brain size; they come down to total neuron amount in the brain; differences in size in certain parts of the brain critical to intelligence and amount of neurons in those critical portions of the brain. I’ve yet to come across a source talking about the different number of neurons in the brain by race, but when I do I will update this article. From what we know, we can make the assumption that blacks have less packing density as well as a smaller number of neurons in their PFC and cerebral cortex. Psychopathy is associated with abnormalities in the PFC; maybe, along with less intelligence, blacks would be more likely to be psychopathic? This also echoes what Richard Lynn says about Race and Psychopathic Personality:

There is a difference between blacks and whites—analogous to the difference in intelligence—in psychopathic personality considered as a personality trait. Both psychopathic personality and intelligence are bell curves with different means and distributions among blacks and whites. For intelligence, the mean and distribution are both lower among blacks. For psychopathic personality, the mean and distribution are higher among blacks. The effect of this is that there are more black psychopaths and more psychopathic behavior among blacks.

Neuronal differences and size of the PFC more than account for differences in psychopathy rates as well as differences in intelligence and scholastic achievement. This could, in part, explain the black-white IQ gap. Since the total number of neurons in the brain dictates, theoretically speaking, how well an organism can process information, and blacks have a smaller PFC (related to future time preference); and since blacks have less cortical neurons than Whites or Asians, this is one large reason why black are less intelligent, on average, than the other races of Man. 

How Intelligent Were Our Hominin Ancestors?

3000 words

Tl;dr: Two of our most recent ancestors have IQs, theoretically speaking, near ours. This suggests that there were beneficial effects of cultural accumulation and transference. This also lends credence to Gould’s work in Full House, where he writes that “cultural change can vastly outstrip the maximal rate of Darwinian evolution.” Brain size may not have increased for IQ, but for expertise capacity. This is seen in the !Kung, gamblers at the horse track, chess players and musicians. There is both theoretical and empirical evidence that expertise needs large amounts of brain to store “and actively process its informational chunks.” These two studies in combination, in my opinion, shows how important the advent of ‘culture’ was for humans. Tool use got passed down as it gave us fitness advantages, then when Erectus discovered fire, that’s when the game changed. One of the first instances of cultural transference then happened, which set the stage for the rest of human evolution. Looking at it from this perspective, the importance of cultural inheritance and transference cannot be understated. It was due to that ‘behavioral change’ that allowed us all of the advantages we have over our ancestors; we have them to thank for everything we see around us today. For if not for them passing down the beginnings of culture that increased our fitness, individuals would have had to learn things for themselves which would decrease fitness. It’s due to this transference that we are here today.

My recent articles have consisted of what caused our big brains, whether or not there is ‘progress’ in hominin brain evolution, why humans are cognitively superior to other animals, and that the human brain is a linearly scaled-up primate brain (Herculano-Houzel, 2009). Knowing what we know about the human brain and the cellular scaling rules for primates (Herculano-Houzel, 2007), we can infer the amount of neurons that our ancestors Erectus, Heidelbergensis, and Neanderthals had. How intelligent were they? Does the EQ predict intelligence better for non-human primates, or does overall brain weight matter most? If our immediate ancestors had the same amount of neurons as we do, what does that mean for our supposed cognitive superiority over them?

How many neurons did our ancestors have, and what did it mean for their intelligence levels? Herculano-Houzel (2013) estimated the amount of neurons that our ancestors had: Afarensis (35 b), Paranthropus (33 b), to close to 50-60 billion neurons in our species Homo from rudolfensis to antecessor, H. Erectus (62 b), Heidelbergensis (76 b), and Neanderthals (85 b), which is within the range for modern Sapiens. From our knowledge of the average human’s IQ (say, 100) and the total number of neurons the brain has (86 billion), what can we say about the IQs of Erectus, Afarensis, Paranthropus, rudolfensis, antecessor, Heidelbergensis, and Neanderthals?

neuron-and-brain-size

(chart from Herculano-Houzel and Kaas, 2011)

Since Afarensis had about 35 billion neurons we can infer that his IQ was about 40. Paranthropus with about 33 billion neurons had an IQ of about 38. Homo habilis had 40 billion neurons, equating to IQ 46. Erectus with 62 billion neurons comes in at IQ 72., which differs with PP’s estimate by 22 points. (You can see the brain size increase [more on that later] and total neuron increase between habilis and erectus, with an almost 20 IQ point difference. The cause of this is the advent of cooking and the tool-use by habilis, named ‘Handy Man’.) Now we come to a problem. The total number of neurons in the brain of Heidelbergensis, Neanderthals, and humans are about the same.

Heidelbergensis had 76 billion neurons which equates to IQ 88. Neanderthals had about 85 billion neurons, equating to IQ 99. Our IQs are 100 with 86 billion neurons. As you can see, the leap from habilis (who may have eaten meat) to Erectus, a jump of 22 billion neurons and along with it 22. (The rise of bipedalism and tool use, fire, cooking, and meat eating led to the huge increase in neurons in our species Homo.) Then from Erectus to Heidelbergensis was a jump of 14 billion neurons along with an increase of 16 IQ points, then from Heidelbergensis to Neanderthal is an increase of 9 billion neurons, increasing IQ about 11 points. Neanderthals to us is about 1 billion neurons showing a difference of 1 IQ point.

This leads us to a troubling question: did Neanderthals and Hheidelbergensis at least have the capacity to become as intelligent as us? Herculano-Houzel and Kaas (2011) write:

Given that cognitive abilities of non-human primates are directly correlated with absolute brain size [Deaner et al., 2007], and hence necessarily to the total number of neurons in the brain, it is interesting to consider that enlarged brain size, consequence of an increased number of neurons in the brain, may itself have contributed to shedding a dependence on body size for successful competition for resources and mates, besides contributing with larger cognitive abilities towards the success of our species [Herculano-Houzel, 2009]. In this regard, it is tempting to speculate on our prediction that the modern range of number of neurons observed in the human brain [Azevedo et al., 2009] was already found in H. heidelbergensis and H. neanderthalensis, raising the intriguing possibility that they had similar cognitive potential to our species. Compared to their societies, our outstanding accomplishments as individuals, as groups, and as a species, in this scenario, would be witnesses of the beneficial effects of cultural accumulation and transmission over the ages.

If true, this is a huge finding as it echoes what Stephen Jay Gould wrote 21 years ago in his book Full House, as I documented in my article Stephen Jay Gould and Anti-Hereditarianism:

“The most impressive contrast between natural evolution and cultural evolution lies embedded in the major fact of our history. We have no evidence that the modal form of human bodies or brains has changed at all in the past 100,000 years—a standard phenomenon of stasis for successful and widespread species, and not (as popularly misconceived) an odd exception to an expectation of continuous and progressive change. The Cro-Magnon people who painted the caves of the Lascaux and Altamira some fifteen thousand years ago are us—and one look at the incredible richness and beauty of this work convinces us, in the most immediate and visceral way, that Picasso held no edge in mental sophistication over these ancestors with identical brains. And yet, fifteen thousand years ago no human social grouping had produced anything that would conform with our standard definition of civilization. No society had yet invented agriculture; none had built permanent cities. Everything that we have accomplished in the unmeasurable geological moment of the last ten thousand years—from the origin of agriculture to the Sears building in Chicago, the entire panoply of human civilization for better or for worse—has been built upon the capacities of an unaltered brain. Clearly, cultural change can vastly outstrip the maximal rate of natural Darwinian evolution.” (Gould, 1996: 220)

But human cultural change is an entirely distinct process operating under radically different principals that do allow for the strong possibility of a driven trend for what we may legitamately call “progress” (at least in a technological sense, whether or not the changes ultimately do us any good in a practical or moral way). In this sense, I deeply regret that common usage refers to the history of our artifacts and social orginizations as “cultural evolution.” Using the same term—evolution—for both natural and cultural history obfuscates far more than it enlightens. Of course, some aspects of the two phenomena must be similar, for all processes of genealogically constrained historical change must share some features in common. But the differences far outweigh the similarities in this case. Unfortunately, when we speak of “cultural evolution,” we unwittingly imply that this process shares essential similarity with the phenomenon most widely described by the same name—natural, or Darwinian, change. The common designation of “evolution” then leads to one of the most frequent and portentious errors in our analysis of human life and history—the overly reductionist assumption that the Darwinian natural paradigm will fully encompass our social and technological history as well. I do wish that the term “cultural evolution” would drop from use. Why not speak of something more neutral and descriptive—“cultural change,” for example? (Gould, 1996: 219-220)

The implications of the findings of the neuron count in Heidelbergensis and Neanderthals, if true, is a huge finding. Because it implies, as Herculano-Houzel and Kaas say, that “our outstanding accomplishments as individuals, as groups, and as a species … would be witnesses of the beneficial effects of cultural accumulation and transmission through the ages.” I’ve been thinking about this one sentence all week, racking my brain on what it could mean, while thinking about alternate possibilities.

I came across a paper by Dr. John Skoyles titled Human Evolution Expanded Brains to Increase Expertise, Not IQ (saying that around this part of the internet is the equivalent of heresy), in which he reviews studies of people living with microcephaly, showing that a lot of people who have the average brain size of Erectus have average, and even sometimes above average/genius IQs. Yes, microcephaly is correlated with retardation and low IQ, but a significant percentage of individuals inflicted with the disease showed average IQ scores (7 percent overall, 22 percent in 1 subgroup) (Skoyles, 1999). As I’ve documented in the past few days, Erectus was the hominin that learned how to control fire and kicked off the huge spurt in our brain growth. When this increase occurred, brain growth still had to happen outside of the brain, making the baby a fetus for one year after it is born. To achieve its larger brain size, the fetus must have a larger brain before birth, with it increasing postnatally.

The solution to this was to widen the hips of women. This would allow the birth canal to be ‘just right’ in terms of size so the baby could just barely make the squeeze. Physiological differences like this are why there are such huge sex differences in sports. Skoyles (1999) writes:

Research of three kinds suggests that small brained people can have normal IQs: (i) a recent MRI survey on brain size (Giedd et al. 1996), (ii) data on individuals born with microcephaly (head circumference 2 SD below the mean; Dorman, 1991); and (iii) data on early hemispherectomy (the removal of a dysfunctional cerebral hemisphere; Smith & Sugar, 1975; Griffith & Davidson, 1966; Vining et al., 1993).

He also writes that in a sample of  1006 school children, 2 percent (19 students) were found to be microcephalic. Of the 19 microcephalics, only 12 were in districts that did intelligence testing. Of the 12, 7 of them had an average IQ, with one having an IQ of 129. Skoyler even cites a study where a woman’s cranial capacity may have possibly been 760 cc (one the lower end of the range of Erectus brains)!! Her employment was described as ‘semi-skilled’, which Skoyler notes is normal for her ability level. Skoyler also says that Medline shows 21 other studies showing that microcephalic individuals have average IQs.

There is also one incidence of a man having a smaller brain than erectus while having a normal intelligence level, showing no peculiarities or mental retardation. Upon his death, his brain was weighed and they discovered that it weighed 624 grams!

Now, of course, the studies that Skoyler brings up are outliers, but they raise very interesting questions when you think about the supposed link with IQ and brain size. More interestingly, even sudden brain damage will leave a small change, if any, in IQ (Bigler, 1995). Finally, the .35 brain size-IQ correlation needs to be talked about. Let’s be generous and say the correlation is .5, 74 percent of the variance in IQ would still be unexplained (Skoyler, 1999: 8).

Skoyler then says that IQ tests “show very moderate to zero correlations with people’s ability to acquire expertise (Ackerman, 1996; Ceci & Liker, 1986; Doll & Mayr, 1987; Ericsson & Lehmann, 1996; Shuter-Dyson & Gabriel, 1981).” So he says that one’s capacity for expertise isn’t necessarily predicated on their IQ as measured by IQ tests. Skoyler writes:

Hence, whereas nonexpert players see only chess pieces, chess masters see possible future moves and potential strategies. Such in depth perception arises from acquiring and being able to actively use a larger numbers of informational “chunks” in analyzing a problem. The number of such chunks in chess masters has been estimated at 50,000 (Gobet & Simon, 1996). Such information processing chunks take many years to acquire. After reviewing performance in sport, medicine, chess and music, Ericsson and Lehmann (1996) propose that before people can show expertise in any domain they must have performed several hours of practice a day for a minimum of 10-years

So, this ‘expertise capacity’ seems to be a trained—not inherited—trait. He then cites a study on people who’ve spent decades at the daily race track betting on horse races. Cece and Liker (1986) measured the IQs of 12 of the experts, and found that they ranged between IQ 81 and 128 (“four were between 80 and 90, three between 90 and 100, two between 100 and 110 and only three above 120 Table 6”). The authors write: “whatever it is that an IQ test measures, it is not the ability to engage in cognitively complex forms of multivariate reasoning.” Moreover, Skoyler writes, expertise in chess (see Erickson, 2000) and music (see Deutsch, 1982: 404-405) “correlates poorly, or not at all with IQ.”

Now that we know that the capacity to develop expertise isn’t needed in the modern world, what did it mean for our hunter-gatherer ancestors? Looking at some of the few hunter-gatherer tribes left today, we can make some inferences.

The !Kung bushmen use in-depth expert knowledge and reasoning. Just by looking at a few tracks in the dirt, a bushman can infer whether the animal that made the track is sick, whether it was alone, its age and sex. They are able to do this by reading the shape and depth of the track in the dirt. Such skill, obviously, is learned, and those who didn’t have the capacity for expertise would have died out. Further, expertise in hunting is more important than physical ability, with the best hunters being over the age of 39 and not those in their 20s. This can further be seen when the young men go out for hunting. The young men do the physical work while the elder reads tracks, a learned ability.

This, Skoyler writes, suggests that those who had the highest capacity for expertise would have had the best chance for survival. Expertise in hunting is not the only thing that we need expertise for, obviously. The skill of ‘expertise’ translates to most all facets of human life. And over time, the advantages conferred by success with these activities “would result in the natural selection of brains with increased capacity for expertise.” So, even possibly, the success of our expertise could have selected for bigger brains which would have further increased the capacity for our expertise.

Since expertise is linked to the number of brain chunks that a brain can “hold and actively process”, that capacity for expertise “may be related to the number of cortical columns able to specialise neural networks in representing and processing them, and through this to cerebral mass Jerison (1991).” And, in brain scans of expert violinists, they have two to three times as much of their cortical area devoted to their left fingers as nonviolinists. ” This suggests that a strong connection should exist between the capacity for acquiring expertise skills and brain mass.”

I’m, of course, not denying the usefulness of IQ tests. What I’m saying, is that IQ tests don’t test a person’s capacity to learn a skill and become an expert in something. IQ tests, as shown, do not measure expertise capacity. IQ tests, then, don’t test for what was central to our evolution as hominins: expertise capacity. Of course, it’s not only expertise in hunting that led to the selection for bigger brains, and along with it expertise capacity. Obviously, this would hold for other things in our evolution that we can become experts in, from scavenging, to gathering, to language, social relationships, tool-making, and passing on useful skills that would infer an increase in fitness.

IQs for hominins are as follows: Paranthropus: IQ 38 (33 billion neurons); Afarensis: IQ 40 (35 billion neurons); Habilis: IQ 46 (40 billion neurons); Erectus: IQ 72 (62 billion neurons); Heidelbergensis: IQ 88 (76 billion neurons); Neanderthals: IQ 99 (85 billion neurons) and Sapiens: IQ 100 (85 billion neurons). So if Heidelbergensis and Neanderthals had IQs around ours (theoretically speaking), and Erectus had an IQ around modern-day Africans today, what explains our achievements over our hominin ancestors if we have around the same IQs?

Lamarckian cultural inheritance. If you think about when brain size began to increase, it was around the time that bipedalism occurred in the fossil record, along with tool use, fire, cooking, and meat eating. I’m suggesting here today that the beginnings of cultural transference happened with Afaraensis, Habilis, and Erectus. Passing down culture (useful traits for survival back then) would have been paramount in hominin survival. One wouldn’t have to learn how to do things on their own, and could learn from and elder the crucial survival skills they needed. This would have selected for a bigger brain due to the need for a higher expertise capacity, as with a bigger brain there is more room for cortical columns and neurons which would better facilitate expertise in that hominin.

I’m still thinking about what this all means, so I haven’t taken a side on this yet. This is an extremely interesting look into hominin brain size evolution, which shows that big brains didn’t evolve for IQ, but to increase expertise capacity. Though there is an extremely strong possibility that we gained over 20 billion neurons from Erectus due to his cooking, which then capped out our intelligence in our lineage. That would then mean that Neanderthals and Heidelbergensis would have had the capacity for the same IQ as us. One thing I can think of that set us apart 70 kya was the advent of art. That was a new way of transferring information from our hugely metabolically expensive neurons. This was also, yet another way of cultural transference. But what this means in terms of Neanderthal and Heidelbergensis IQ and what it means for our accomplishments since them is another story, which I will return to in the future.