NotPoliticallyCorrect

Home » Biology » Musicogenic Epilepsy

Musicogenic Epilepsy

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 292 other subscribers

Follow me on Twitter

Goodreads

1800 words

I was watching the program Diagnose Me on Discovery Health and a woman kept having seizures whenever she heard a certain type of music—“alternative high-pitched female singing”, according to the woman—but her doctors didn’t believe her. So her and her husband began looking for specialists who specialize in hard-to-treat epilepsy. He recommended an endocranial EEG (images of such a surgery can be found below), which meant that the top part of her skull would be removed and electrodes would be placed onto the top of her brain. After the electrodes were placed on the brain. they played the music she said triggered her epilepsy—which was “high-pitched female singing”—and she began to seize. The doctor was shocked and he couldn’t believe what he saw. They ended up finding out that a majority—not all—of her seizing was coming from the right temporal lobe. So her and her husband had a choice—live with the seizures (which she couldn’t because she did not know where she would hear the music) or get part of her brain removed. She chose to have part of her right temporal lobe removed and when it was removed she no longer seized from hearing the music that formerly triggered her symptoms.

The condition is called “musicogenic epilepsy” which is a rare form of what is called “reflex epilepsy”—of which, another similar form involved hitting something which then causes seizing in the patient. (It’s called “reflex epilepsy” since the epileptic events occurs after an event—music, hitting something with your foot, seeing something on the television, etc.) This occurs when certain types of music are heard, certain musical notes can trigger electrical brain activity. The cure is to remove the part of the brain that is affecting the patient. (It is worth noting that many individuals throughout the past 100 years have had large sections of their brains removed and had no loss-of-functioning, staying pretty much the same as they were.) It is important to note that the music is not causing the seizures, it is triggering them—it brings them out. Most of the seizing is localized in the right temporal lobe (Kaplan, 2003), further being localized in Heschl’s gyrus (Nagahama et al, 2017). This has been noted by a few researchers since last century (Shaw and Hill, 1946; Fujinawa and Kawai, 1978) while the Joan of Arc was said to have her perception scrambled while hearing church bells; a Chinese poet stated that he became “absent-minded” and “sick” when hearing the flute-playing from the street vendor (Murray, 2010: 173).

The condition was first noted by a doctor in 1937, with the first known reference to this form of epilepsy being observed in the 1600s (Kaplan, 2003: 465). It affects about 1 in 10,000,000 people (Ellis, 2017). Critical reviews state not to underestimate the power of anti-epileptic drugs in the treatment and management of musicogenic epilepsy (Maguire, 2012), but in the case described above, such drugs did nothing to cure the woman’s seizures that occurred each time she heard a certain kind of music. The effect of music on seizing, it seems, is dichotomous with certain kinds of music either helping manage or causing seizing. The same melody, however, could be played in a different key and not cause seizing (Kaplan and Stoker, 2010) and so, it seems that certain types of sound frequencies influence/screw up the electrical activity in the brain which then leads to seizures of this kind. A specialist in epilepsy explains:

In people with reflex epilepsy, the trigger is extremely specific, and the seizure happens soon thereafter. “It can be a specific song by a particular person or even a specific verse of the song,” says Dr. So, who is a past president of the American Epilepsy Society. For some people, the trigger is a touch or motion. “If patients are interrupted in a particular way, if they are walking along and someone steps in front of them, they may have a seizure,” says Dr. So. In Japan, seizures caused by video games have been reported, he says, but they are highly unusual.

Dr. So evaluated a woman from Tennessee who began having seizures during church when she heard highly emotional hymns. She would blank out and drop her hymn book. At other times, Whitney Houston’s “I Will Always Love You” triggered seizures. The woman had a history of small seizures, but having one while hearing music was a new development. She said the seizures would typically begin with a sense of dread and the feeling that someone was lurking by her side. Dr. So and his Mayo Clinic team attached electrodes to the woman’s scalp to study electrical activity while she listened to different types of music. An electroencephalogram (EEG) showed that slow, emotional songs triggered seizure activity in her brain’s temporal lobe, while faster tunes did not. Dr. So diagnosed the woman with musicogenic epilepsy, a type of reflex epilepsy where seizures are caused by specific music or types of music, and prescribed antiseizure medication. He says he’s had another patient whose seizures were triggered by Rihanna’s “Disturbia” and Pharrell Williams’ “Happy.”

Though musicogenic epilepsy is extremely rare, it may be slightly underreported since many people with the disease may not put two and two together and link their seizing with the type of music or sounds they hear in their day-to-day life. One individual with epilepsy also recounts his experience with this type of rare epilepsy:

… but I still find that certain music, high pitched noise set’s off a kind of aura, I feel spaced out, have intense fear and it sounds almost like water rushing and I hear voices.

One case report exists of a man in which his later seizures were induced by music which prompted stress and a bad mood, implying that the aetiology of musicogenic epilepsy involves an association between the seizing and the patient’s mental state (Cheng, 2016).

We can see how the endocranial EEG looks and how it gets done (WARNING: GRAPHIC) by referring to Nagahama et al (2019):

Basic RGB

Intraoperative photographs demonstrating exposure and intracranial electrode placement. A right frontotemporoparietal craniotomy (A) allowed proper exposure for placement of grid, strip, and depth of electrodes (B), including the HG depth electrode. The sylvian fissure is marked with a dashed line. The HG depth electrode and PT depth electrose are marked with X symbols anteriorly and posteriorly, respectively, at their entry points at the cortical surface. Ant = anterior; inf = inferior; post = posterior; sup = superior.

Fig. 2 V1

Intraoperative placement of the HG depth electrode. A: The planning view on the frameless stereotactic system (Stealth Navigation, Medtronic) showing the entry point and the trajectory (green circles and dotted lines). B: The similar planning view showing the target and the trajectory. C and D: Intraoperative photographs showing placement of the HG depth electrode. A Stealth Navigus probe was used to select the appropriate trajectory of a guiding tube positioned over the entry point (C). An electrode-guiding cannula was advanced through the tube to the previously determined depth (D). An actual depth electrode was subsequently passed through the cannula, followed by removal of the guiding tube/cannula system. Note the unique anterolateral-to-posteromedial trajectory within the STP for placement of the HG depth electrode.

The average age of onset of musicogenic epilepsy is 28 (Wieser et al, 1997) while the first cases are not reported until around one’s mid-to-late 30s due to the fact that most people are unware that music may be causing their seizures (Pittau et al, 2008; Generalov et al, 2018). This may be due to the fact that seizing may begin several minutes after hearing the music that affects the patient in question (Avanzini, 2003). While the specific tempo and pitch of music seems to have no effect on the beginnings of seizing (Wieser et al, 1997), many patients report that their specific triggers are due to hearing certain lines in songs (Tayah et al, 2006) which implies that it is not the music itself which is causing the seizing, but the emotional response that occurs to the patient after hearing the music and this is supported by the fact that many patients who report such symptoms are interested in music or are musicians themselves (Wieser et al, 1997).

See table 1 from Kaplan (2003: 466) for causes of musicogenic epilepsy in the literature:

musicogenicepi

As can be seen by the above table, the mood component is related to the musical type; so the music elicits some sort of emotional state in the individual which would, it seems, to be part of the cause which then triggers the seizure—though the music/emotions are not causing the seizing itself, it is bringing them out.

Going to the shops was fraught with danger. Turning on the television was like playing russian roulette. Even getting into a lift was a gamble. For 23 years my life was hugely restricted because I had epileptic fits whenever I heard music.

If it was more than a few notes, a strange humming would start in my head, immediately followed by a seizure. I didn’t fall to the ground and twitch, but would wander around in a daze, my heart racing, my mind a blank. I also experienced hallucinations: people around me appeared microscopic and it felt as if I had been captured by an invisible force field. It was a terrifying experience and I felt drained for hours afterwards. (Experience: Music gave me seizures)

One woman describes her experience with musicogenic epilepsy for The Guardian. She did everything she could think of to stop the music-induced seizures—from sticking cotton balls into her ears to stop hearing sounds, to staying inside of the house (in case a car driving by played the type of music that triggered her seizing), to having a silent wedding with no music. She ended up getting referred to a specialist and she got her brain checked out. Come to find out, she had scarring on her right temporal lobe and so, surgery was done to fix it. She was cured from her condition and she could then attend social functions in which music was played.

The brain has the capacity to produce electricity, and so, in certain individuals with certain things wrong with the structure of their brains (like in their right temporal lobe), if they hear a certain kind of music or tune, they may then begin seizing. While the condition is rare (around 150 cases have been noted), strides are being made in discovering how and why such things occur. The only cure, it seems, is to remove the affected part of the brain—the right temporal lobe in a majority of cases. Such operations, however, do not always have the same debilitating effects (i.e., causing loss of mental capacity). That the brain’s normal functioning can be affected by sound (music) is very interesting and speaks to the fact that our brains are an enigma which is just beginning to be unraveled.

Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Please keep comments on topic.

Blog Stats

  • 874,610 hits
Follow NotPoliticallyCorrect on WordPress.com

suggestions, praises, criticisms

If you have any suggestions for future posts, criticisms or praises for me, email me at RaceRealist88@gmail.com

Keywords

%d bloggers like this: