2200 words
Blacks vs whites: which race is stronger? Unfortunately, actual studies on actual strength lifts between races are few and far between (and if there are any comparisons between races it’s on an ancillary movement such as quadricep extension; for example see Goodpaster et al 2006). There is, though, one study comparing whites and blacks on a major lift: the bench press. The paper is littered with many problems, most of which make me not able to take the paper seriously. I’ve written about this paper in the past but this article will be much more comprehensive.
When searching for racial comparisons in physical strength, Boyce et al (2014) is one of the only papers one would come across looking at racial differences in strength in one specific (main) lift. The authors used a longitudinal design: they had the police officers’ bench press numbers during their first week on the force and then had data 12.5 years later to assess racial and gender differences in the bench press. They assessed strength scores on the bench press, bench press/lean mass, as well as bench press/body mass.
The assessed 327 police officers: 30 women (13 black, 17 white) and 297 males (41 black and 238 white). Officers that could not be classified as either white or black were removed from the sample. Average number of years between the test at recruitment and later into their career was 12.5 years +/- 2 years while the mean age at the initial recruitment was 26.4 years +/- 3.4 years. The officers were mostly college-educated and were low-middle to upper-middle class.
When the recruits were considered for the job, they had their body mass, percent body fat (with skinfold calipers, which will be covered below) and did a 1RM (one-rep max) on the bench press to assess physical strength. The physical fitness battery (for incoming officers) was as follows (in order): body fat, sit-and-reach flexibility (to see how flexible one is in their lower body/hamstrings), 1RM bench press, and finally a 1.5-mile run. For in-service officers, they had their body fat tested, a treadmill test, bench press, muscular endurance (either curls or sit-ups; curls are a contraindicative exercise if used with a straight bar while sit-ups are contraindicative since they put unneeded strain on the lower back).
All groups, when combined after 12.5 years, had significant mean gains in strength which were accompanied by gains in body mass, percent fat mass, and lean mass. Black men, at initial recruitment, weighed 187 pounds and benched 210 pounds; white men weighed 180 pounds and benched 185 pounds. Black men benched 1.12 times their body weight whereas white men benched 1.027 times their body weight. At the follow-up assessment, black males weighed 223 pounds and benched 240 pounds. White males weighed 205 pounds and benched 215 pounds. Black males benched 1.07 times their body weight whereas white males benched 1.05 times their body weight. (To find out what percentage of body weight one lifts, take weight lifted and divide it by the weight of the individual.)
Black women, on the other hand at initial recruitment, weighed 130 pounds and benched 85 pounds whereas white women weighed 127 pounds and benched 82 pounds. Black women benched .653 times their body weight whereas white women benched .645 times their body weight. At the follow-up assessment, black women weighed 151 pounds and benched 98 pounds whereas white women weighed 141 pounds and benched 90 pounds. Black women benched .649 times their body weight at the follow-up whereas white women benched .638 times their body weight.
So there was no real difference between black and white female recruits/officers but there was a difference between black and white male recruits/officers. Of course, due to higher levels of testosterone and other hormones compared to women, the males had a changed much more significantly from the initial recruitment. Figures 1 and 2 from Boyce et al (2014: 146) are important too:
Since the study was done over 12.5 years and the individuals were in their mid-20s at initial recruitment, then this study is anomalous since the individuals gained strength and lean mass well into their 30s. Testosterone begins to decrease starting at age 25, though it is not a foregone conclusion that this occurs; age-related declines in testosterone are not inevitable. It just seems that this is the case since, around one’s mid-20s, life changes happen (marriage, kids) which then may cause lifestyle changes (weight gain and the onset of depression). Most of the testosterone decline can be explained by smoking, obesity, depression and other health factors (Shi et al, 2013). So if these officers had good nutrition—and I do not see why they did not—then they can, in effect, bypass most of the so-called age-related declines in testosterone (which is also related to marriage, having children and obesity; Gray, 2011; Pollet, Cobey, and van der Meij, 2013; Mazur et al, 2013).
Gains in lean mass are related to gains in strength, and so, since there was considerable body mass gain and, consequently, lean mass gain, then overall bench pressing strength should have pretty much substantially increased. The strength gains, though, were negated when they divided the weight lifted by the weight of the lifters (pound-for-pound strength, which is what matters more). Black males had the greatest body mass gain over the 12.5 year period, which subsequently corresponded to a decrease in strength on the bench press.
Over the 12.5 year period, black males gained 36 pounds whereas white males gained 25 pounds. Although black males gained more weight over the 12.5 year period—and loss on bench press/body mass—blacks were still very slightly stronger than whites (1.07 compared to 1.05) which is not significant. Black and white females, on the other hand, had no real differences in any of the scores that Boyce et al (2014) did. Furthermore, black and white women, in this study, had similar strength gains and body mass/lean mass gains. Of course, this is a self-selected sample: black women are consistently noted to carry more fat mass than white women (see Rahman et al, 2009).
Both black and white males increased in the bench press throughout the 12.5 year period compared to black and white females, which is due to them being men (higher levels of testosterone and other hormones, larger muscle cross-section area; Miller et al, 1993). The groups who were stronger when they were hired remained the strongest at the follow-up. So, Boyce et al (2014) conclude, the bench press is able to be used as an assessor of upper-body strength since blacks actually, according to their study, are stronger than whites so, therefore, “an upper body strength test such as a bench press will have little adverse impact on blacks, a racially protected group” (Boyce et al, 2014: 148). Though, for women, since they are not as physically strong as men, this will have an “adverse impact on female recruit and incumbent officers, a gender protected group, no matter if they are black or white” (Boyce et al, 2014: 148).
Now time for a few pitfalls (one of which is not the fault of the investigators): height was not assessed; skin-fold calipers were used to assess body fat; and a Smith machine bench press was used.
Height: Due to an ongoing investigation on the Charlotte Mecklenburg Police Department (for apparently discriminating against certain recruits on the basis of height), the height of the officers at recruitment and the follow-up were not noted. This is a problem. If height were known (along with a few more anthropometric variables), then we can infer who had the somatotype that is conducive to bench pressing. In lieu of no height data, we cannot infer this. It is easier for people with shorter limbs to bench press, since the bar has a shorter path to travel, compared to people with longer arms who have to move the weight a further distance. Blacks are more likely to have longer arms and, as I have argued, this would impede them in strength when bench pressing and overhead pressing but will help in the deadlift since they have longer arms and a shorter torso, it is easier for people with this soma to deadlift due to their body proportions.
Skin-fold calipers: Body fat was assessed using skin-fold calipers. Blacks have thinner skin folds than whites, and so since they have thinner skin folds than whites, and the formula for assessing body fat from skin-folds is based on whites, then, it has been argued, that black males need their own BMI scale since they have thinner skin folds and differing levels of fat-free body mass (Vickery, Cureton, and Collins, 1988; Wagner and Heyward, 2000). So since the levels of body fat were off for blacks, then Boyce et al’s (2014) bench press/lean mass is useless since body fat was not assessed correctly. (I know that using calipers is cheaper and easier than sending everyone for a DXA scan, but the difference in body composition between blacks and whites should be known so that, at least when it comes to fat comparisons between different races, bad methods don’t get used and parroted.) Since there are well-known differences in skinfolds as they relate to body fat percentage/lean mass regarding blacks and whites, it’s, again, safe to toss out that part of the study (regarding weight moved/lean mass), since there are huge flaws in regard to assessing body fat through use of conventional measures in blacks compared to whites.
Smith machine bench press: This is, perhaps, one of the most important pitfalls. I can think of a few reasons why this machine was used: (1) you don’t really need to teach someone how to get into proper position to grab the bar. (2) the bar is on a set path, and so people with different anthropometric measures may be uncomfortable while using the machine (which would then affect overall strength). (3) Saeterbakken, Tillaar, and Fimland (2011) assessed three different chest press exercises: the Smith machine bench press, the barbell bench press, and the dumbbell bench press. Those in the study had the highest 1RM on the bench press, followed by the Smith machine and finally were the weakest on dumbbell bench press. The biceps brachii is used for stabilization, and they found that EMG activity in the biceps brachii increased with stability requirements (dumbbell > barbell > Smith). This is due to the fact that, on the two exercises that are not assisted, the muscles need to stabilize the free weight. Since you’re using more muscles to stabilize the weight, then, theoretically, you can move more weight. EMG activity was the same regarding the pectoralis major and anterior deltoids but was different in the triceps and biceps brachii. The prime movers (agonists) of the bench press are the anterior deltoids, triceps, and pecs/serratus. Therefore, the antagonists are the posterior deltoids, the biceps, and the lats/rhomboids.
The load lifted on the bench press was three percent higher than on the Smith machine. Since stability requirements are low with the Smith, and the bar is on a set path that cannot be changed, then, theoretically, one should be able to move more weight on the Smith machine (which is my personal experience and the experience of many people I have worked with) compared to the dumbbell and regular bench press. Though, the load lifted on the bench press was about three percent higher than on the Smith machine bench press. The activity of the pectoralis and the anterior deltoid was lower on the eccentric phase (think the negative portion of the lift) when compared to dumbbell and barbell pressing, which is, again, explained by lack of stabilizing muscles used on the Smith machine bench press. So this small study (n=12) shows that there are differences in 1RM between the three lifts studied and that there are differences in the neuromuscular activity of the flexor/extensor muscles of the arm, but showing no difference in the prime movers of the lift (such as the pectoralis major). In the descending phase of the lift, there was less EMG activation, which indicates that a greater neural drive is needed for the eccentric phase of the lift.
The Smith machine used in Boyce et al (2014) was an Atlantis Angled Smith Machine E-155, which I have used personally (and have had hundreds of people use). In my personal experience, weight moved on the Smith is considerably different when compared to a regular bench press, due to the fact that one does not have to stabilize the bar with certain muscles. I will keep an eye out for more Smith machine/bench press/dumbbell press studies in the future, but, from personal experience, one is able to lift more on a Smith than a regular bench.
Conclusion
This is one of the only studies of its kind: assessing racial differences in strength on a major lift. Boyce et al (2014) found that, although blacks had a sharper decrease in pound-for-pound strength, they still kept their slight strength advantage over the 12.5 year period. Both black and white women had similar strength levels and gains in strength and lean mass over the 12.5 year period. Lean mass gain over the period was related to strength gains on the bench; but, as pointed out, they did not correctly assess lean mass for blacks, since calipers (used to test skin folds) are not useful for blacks in the case of figuring out lean mass/body fat levels (Vickery et al, 1988; Wagner and Heyward, 2000).
This study is useless to me. Blacks are not stronger than whites; anthropometric variables play a huge role in strength differences and, due to these differences, blacks are not stronger than whites on certain lifts, as I have documented.
“They did not correctly assess lean mass for blacks, since calipers (used to test skin folds) are not useful for blacks in the case of figuring out lean mass/body fat levels”
It is a well known fact, that is why there are different equations (introduced years ago) to assess lean mass among diffrent groups when using the calliper method.
So you cannot say that they did not correctly assess lean mass for “blacks” unless you can prove that they used the same equation.
LikeLike
Boyce et al (2014) refer to the paper Generalized equations for predicting body density in men by Jackson and Pollock (1978), and there is no mention of race nor ethnicity. Thus, I can only assume (very reasonably) that they did not correctly assess lean mass for blacks.
LikeLike
“Since the study was done over 12.5 years and the individuals were in their mid-20s at initial recruitment, then this study is anomalous since the individuals gained strength and lean mass well into their 30s”
That is another falsehood you claim here.
Nowhere in this study is claimed that anybody gain lean mass well into their thirties.
The only thing we know is that they were heavier 12.5 years after the first measurement. For all we know, they could have gain mass and strength between the age of 25 -32, which is largely possible (most strength athletes do not reach their peak before late 20s, early 30s) and retain their gain from the early 30 to late 30.
Or even worse , they could have gain mass up to their late 20s and lost it from this point to their thirties and still be heavier and stronger that they were at 25.
example : A random group of male who strength train : at 25 they’re 200lbs then at 30, 240 lbs, then at 36, 230.
Because we do not know the fluctuation of their weight throughout the years , you could assume that they reached their peak at 36, if you do not get in-between info, since they’re 30lbs heavier than at 25
Do you understand what I mean, In this study we do not have a year by year check up but. So why do you assume that they gained weight linearly ??
LikeLike
Valid objection, though most people’s weight does not fluctuate as much as you would assume (due to the body weight set point; except with increasing age due to slower metabolism and decreasing physical activity). Though the subjects of the study were, obviously, strength training.
Nevermind the Smith machine bench press. That’s enough to throw it out the window.
LikeLike