NotPoliticallyCorrect

Home » Race Realism » HBD and Sports: Basketball

HBD and Sports: Basketball

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 215 other followers

Follow me on Twitter

Charles Darwin

Denis Noble

JP Rushton

Richard Lynn

L:inda Gottfredson

Goodreads

Advertisements

1600 words

In the past, I have written on the subject of HBD and sports (it is a main subject of this blog). I have covered baseball, football, running, bodybuilding, and strength over many articles. Though, I have not covered basketball yet. Black Americans comprised 74.4 percent of the NBA, compared to 19.1 percent of whites (TIDES, 2017). Why do blacks dominate the racial composition of baskeball? Height is strongly related to success in basketball, though whites and blacks are around the same height, with blacks being slightly shorter (blacks being 69.4 inches compared to whites who were 69.8 inches; CDC, 2012). So, why do blacks dominate basketball?

Basketball success isn’t predicated so much on height, rather, limb length plays more of a factor in basketball success. Blacks have longer limbs than whites (Wagner and Heyward, 2000Bejan, Jones, and Charles, 2010). The average adult man has an arm span about 2.1 inches greater than his height (Nwosu and Lee, 2008), while Monson, Brasil, and Hlusko (2018) state that taller basketball players had a greater height-to-wingspan ratio and they were, therefore, more successful. The Bleacher Report reports that:

The average NBA Player’s wingspan differential came out at 4.3 percent, so anything above that is going to be reasonably advantageous.

So, more successful basketball players have a longer arm span compared to their height, which makes them more successful in the sport. Blacks have longer limbs than whites, even though they are on average the same height. Thus, one reason why blacks are more successful than whites at basketball is due to their somatotype—their long limbs, specifically,

David Epstein (2014: 129) writes in The Sports Gene:

Based on data from the NBA and NBA predraft combines (using only true, shoes-off measurements of players), the Census Bureaum abd the Centers for Disease Control’s National Center for Health Statistics, there is such a premium on extra height for NBA that the probability of an American man between the ages of twenty and forty being a current NBA player rises nearly a full order of magnitude with every two-inch increase in height starting at six feet. For a man between six feet and 6’2”, the chance of his currently being in the NBA is five in a million. At 6’2” to 6’4”, that increases to twenty in a million. For a man between 6’10” and seven feet tall, it rises to thirty-two thousand in a million, or 3.2 percent. An American man who is seven feet tall is such a rarity that the CDC does not even list a height percentile at that stature. But the NBA measurements combined with the curve formed by the CDC’s data suggest that of American men ages twenty to forty who stand seven feet tall, a startling 17 percent of them are in the NBA right now.* Find six honest seven-footers, and one will be in the NBA.

* Many of the men who NBA rosters claim are seven feet tall prove to be an inch or even two inches shorter when measured at the combine with their shows off. Shaquille O’Neal, however, is a true 7’1” with his shoes off.

And on page 132 he writes:

The average arm-span-to-height ratio of an NBA player is 1.063. (For medical context, a ratio greater than 1.05 is one of the traditonal diagnostic criteria for Marfan syndrome, the disorder of the body’s connective tissues that results in elongated limbs.) An average-height NBA player, one who is about 6’7”, has a wingspan of seven feet.

So we can clearly see that NBA players, on average, are freaks of nature when it comes to limb length, having freakish arm length proportions which is conducive to success in basketball.

Why are long limbs so conducive to basketball success? I can think of a few reasons.

(1) The taller one is and the longer one’s limbs are the less likely they are to have a blocked shot.

(2) The taller one is and the longer one’s limbs are is advantageous when performing a lay-up.

(3) The taller one is and the longer one’s limbs are means they can battle for rebounds at better than a shorter man with shorter limbs.

Epstein (2014: 136) also states that the predraft data shows that the average white NBA player is 6’7.5” with a wingspan of 6’10” while the average black NBA player is 6’5.5” with an average wingspan of 6’11”—meaning that blacks were shorter but “longer.” What this means is that blacks don’t play at “their height”—they play as if they were taller due to their wingspan.

Such limb length differences are a function of climate. Shorter, stockier bodies (i.e., an endomorphic somatotype) is conducive to life in colder climes, whereas longer, more narrowbodies (ecto-meso) are conducive to life in the tropics. Endomorphic somas are conducive to  life in colder climes because there is less surface area to keep warm—and this is seen by looking at those whose ancestors evolved in cold climes (Asians, Inuits)—shorter, more compact bodies retain more heat. Conversely, ecto-meso somas are conducive to life in hotter, more tropical climes since this type of body dissipates heat more efficiently than endo somas (Lieberman, 2015). So, blacks are more likely to have the soma conducive to basketball success due to where their ancestors evolved.

So, now we have discussed the facts that height and limb length are conducive to success in basketball. Although blacks and whites in America are the same height, they have vastly different average limb lengths, as numerous studies attest to. These average differences in limb length are how and why blacks succeed far better than whites in the NBA.

Athleticism is irreducible to biology (Lewis, 2004), as has been argued in the past. However, that does not mean that there are NOT traits that are conducive to success in basketball and other sports. Both height and limb length are related: more than likely, the taller one is, the longer their limbs are relative to their height. This is what we see in elite NBA players. Height, will, altitude, and myriad other factors combine to create the elite NBA phenotype; height seems to be a necessary—not sufficient—condition for basketball success (since one can be successful at basketball without the freakish heights of the average player). Though, as Epstein wrote in his book, both height and limb length are conducive to success in basketball, and it just so happens that blacks have longer limbs than whites which of course translates over to their domination in basketball.

Contrary to popular belief, though, players coming from broken homes and an impoverished life are not the norm. As Dubrow and Adams (2010) write:

We find that, after accounting for methodological problems common in newspaper data, most NBA players come from relatively advantaged social origins and African Americans from disadvantaged social origins have lower odds of being in the NBA than African American and white players from relatively advantaged origins.

Sports writer Peter Keating writes that:

[Dubrow and Adams] found that among African-Americans, a child from a low-income family has 37 percent lower odds of making the NBA than a child from a middle- or upper-income family. Poor white athletes are 75 percent less likely to become NBA players than middle-class or well-off whites. Further, a black athlete from a family without two parents is 18 percent less likely to play in the NBA than a black athlete raised by two parents, while a white athlete from a non-two-parent family has 33 percent lower odds of making the pros. As Dubrow and Adams put it, “The intersection of race, class and family structure background presents unequal pathways into the league.”

(McSweeney, 2008 also has a nice review of the matter.)

Turner et al (2015) state that black males were more likely to play basketball than whites males. Higher-income boys were more likely to play baseball, whereas lower-income boys were more likely to play basketball. Though, it seems that when it comes to elite basketball success, players seem to come from higher-income homes.

Therefore, to succeed in basketball, one needs height and long limbs to succeed in basketball. Contrary to popular belief, it is less likely for an NBA player to come from a low-income family—they come from middle-class families the most. Indeed, those who come from lower-income families, even if they have the skill, most likely won’t have the money to develop the talent they have. Though there are some analyses which point to basketball being played by lower-income children—and I have no reason to disagree with them—when it comes to professional play, both blacks and whites are less likely to become NBA players if they grew up in poverty.

The limb length differences between blacks and whites which are conducive to sport success are a function of the climate that their ancestors evolved in. Now, although athleticism is irreducible to biology (because biological and cultural factors interact to create the elite athletic phenotype), that does not mean that there are no traits conducive to sporting success. Quite the opposite: A taller player would more often than not beat a shorter player; when it comes to players with the same height and different limb lengths, the one with the longer limbs will stand a better chance at beating the one with shorter limbs. Blacks and whites have different limb lengths, and this explains how and why blacks are more successful at basketball than whites. Cultural and biological factors combine in order to cause what one is good at.

Basketball is huge in the black community (due in part to people gravitating toward what they are good at), and due to this, since blacks have an advantage right out of the gate, they will gravitate more toward the sport and, therefore, height and limb length is a huge reason why black dominate at this sport.

Advertisements

7 Comments

  1. mjwwarriorking says:

    🙂

    Like

  2. dealwithit says:

    and longer fingers. also predicted by allen’s rule. longer fingers = better ball control.

    The perfect 100m sprinter is tall, with a strong mesomorphic body shape. Top sprinters have slim lower legs and relatively narrow hips which gives a biomechanical advantage. They have a high percentage of fast twitch fibres (more than 80%). They use muscle fuel so fast that they are practically running on empty by the end of the race.

    as i’ve commented before the other differences between blacks and everyone else are sufficient to explain their dominance of sprints. the effect of fiber type is folk wisdom.

    do you already have a post demonstrating that fiber type composition is important and innate rather than the result of training?

    They use muscle fuel so fast that they are practically running on empty by the end of the race.

    my experience sprinting is that explosive strength is spent by 60m.

    Like

  3. dealwithit says:

    in other words…

    longer than 60 m really isn’t a sprint. it becomes a fast jog.

    and of course in american football, football, rugby, etc. speed beyond at most 40 yards is irrelevant. and speed in a straight line is totally irrelevant.

    that is…i’d actually be surprised if bolt could run a cone drill faster than maradona.

    short legs are an advantage in “cone course sprinting”.

    bolt is physically incapable of doing this:

    Like

  4. dealwithit says:

    genes DO CAUSE some things, but…

    if you’re interested in how genes don’t necessarily cause certain things you might do a post on late onset huntington’s disease.

    it’s 100% clear that early onset is caused by so man CAG repeats in the “huntingtin” gene. but CAG repeats of 41 or less have an enormous range of phenotypes.

    Like

  5. dealwithit says:

    greyhounds not only have extreme usian bolt like proportions but apparently they also have a higher % of fast twitch fibers as rr claims sprinters have.

    In all muscles the greyhound had a significantly higher percentage of fibres with high myosin ATPase activity at pH 9.4 than the other breeds, with almost 100 per cent in most muscles examined.

    Like

  6. dealwithit says:

    it’s just that the “twitch fiber” theory seems facile like a “folk etymology”.

    and when i was at “speed camp” the one phd there told me the fiber composition theory was bullshit, what mattered was tendon elasticity. he used the example of borzov. borzov was slower than i was at the same age.

    so human sprinting speed is “multifactorial”.

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Please keep comments on topic.

Jean Baptiste Lamarck

Eva Jablonka

Charles Murray

Arthur Jensen

Blog Stats

  • 578,081 hits
Follow NotPoliticallyCorrect on WordPress.com

suggestions, praises, criticisms

If you have any suggestions for future posts, criticisms or praises for me, email me at RaceRealist88@gmail.com
%d bloggers like this: